Immissionsschutzbericht 2001

Bericht des Landesamt für Umweltschutz Sachsen-Anhalt 2002 - Heft 38

1 Er	nissionen luftverunreinigender Stoffe	
1.1	Emissionen genehmigungsbedürftiger Anlagen	
1.2	Nicht genehmigungsbedürftige Anlagen	
1.3	Verkehrsbedingte Emissionen	
1.4	Gesamtemissionen in Sachsen-Anhalt	
1.5	Klimaschutz und Energie	
	5.1 Kohlendioxid-Emissionen	
	5.2 Windenergienutzung in Sachsen-Anhalt	
1.6	Emissionsmessungen	
2 Im	missionen luftverunreinigender Stoffe	
2.1	Konzeption der Immissionsmessungen	
2.2	Immissionsmeteorologische Einschätzung	
	Ergebnisse aus dem Luftüberwachungs- und Informationssystem Sachsen-Anhalt	
2.3	Ergebnisse aus dem Luttuberwachungs- und informationssystem Sachsen-Annatt 3.1 Ozon	
	3.2 Stickstoffmonoxid (NO) und Stickstoffdioxid (NO ₂)	
	3.3 Benzol, Toluol und Xylole	
	3.4 Ruß	
	3.5 Partikel PM10, Partikel PM2,5	
	3.6 Schwebstaub	
	3.7 Inhaltsstoffe in der Fraktion Partikel PM10	
	3.9 Kohlenmonoxid	
	3.10 Polyzyklische aromatische Kohlenwasserstoffe (PAH)	
	3.11 Schwefelwasserstoff	
2.3	3.12 Kohlendioxid	
2.4	Ergebnisse der Depositionsmessungen	
2.4	4.1 Staubniederschlag/Schwermetalle	
	4.2 Quecksilber als Gesamtdeposition	
	4.3 Anionen und Kationen als Gesamtdeposition	
	4.4 Anionen/Kationen als Nassdeposition	
	4.5 Dioxine und Furane als Gesamtdeposition	
2.5	Messprogramm B91	
	5.1 Art der Messungen und Verteilung der Messpunkte	
	5.3 Bewertung der Ergebnisse	
	5.4 Stationäre Messungen von Partikel PM10, Schwebstaub (TSP) und Ruß	
2.6	Beurteilung der Immissionen nach den EU-Tochterrichtlinien	
2.7	Aktuelle Informationen zur Luftqualität in Sachsen-Anhalt	
2.8	Bewertungsmaßstäbe	
	nlagensicherheit/Störfallvorsorge und Schadensereignisse	
3.1	Störfallrecht	
3.2	Schadensereignisse	
	2.1 Situation	
	2.2 Auswirkungen	

4	Die	e Überwachung umweltrelevanter Inhaltsstoffe in flüssigen Treibstoffen	83
5	Läi	rm und Erschütterungen	85
	5.1	Ermittlung und Beurteilung	86
	5.2	Maßnahmen zur Minderung von Lärm und Erschütterungen	88
	5.3	Lärmminderungsplanung	90
6	Ele	ektromagnetische Felder und Licht	92
	6.1	Elektromagnetische Felder	92
	6.2	Licht	95
7	Ku	rzfassung	96
	An	hang	99

Vorwort

Der Schutz unserer Gesundheit, die Bewahrung unserer natürlichen Lebensgrundlagen und die Erhaltung von Bauten und Baudenkmälern ist das Ziel aller Anstrengungen, Luftverschmutzung und Umweltbelastung zu reduzieren. Diesem Ziel sieht sich die Landesregierung verpflichtet.

Der Immissionsschutzbericht dokumentiert die Belastung der Luft im Land Sachsen-Anhalt durch feste, flüssige und gasförmige Schadstoffe und beinhaltet darüber hinaus die Ergebnisse der Ermittlung und Beurteilung von Lärm, Erschütterungen und elektromagnetischen Feldern sowie Aussagen zur Anlagensicherheit und Störfallvorsorge. Er wird nun schon in zwölfter Folge durch das Landesamt für Umweltschutz Sachsen-Anhalt (LAU) im Auftrag des Ministeriums für Landwirtschaft und Umwelt des Landes Sachsen-Anhalt erstellt und herausgegeben.

Der vorliegende Bericht basiert auf den im Jahre 2001 ermittelten Umweltdaten. Die Emissions- und Immissionsdaten für Luftverunreinigungen des Jahres 2001 belegen eine deutlich verbesserte Luftqualität im Vergleich zur Situation zum Beginn der 90er Jahre. Dennoch sind auch 2001 örtlich und zeitlich begrenzt höhere Luftschadstoffbelastungen aufgetreten. Die heute relevanten Hauptschadstoffe sind Feinstaubpartikel (PM10), Stickstoffoxide und Ozon. Der hauptsächlich aus der Braunkohleverbrennung stammende Schadstoff Schwefeldioxid spielt dagegen nur noch eine untergeordnete Rolle.

Zur Verbesserung der Lärmsituation im Lande wurden 2001 weitere Schallschutzwände errichtet. Bis Ende 2001 sind in Sachsen-Anhalt für 35 Städte und Gemeinden Schallimmissionspläne und für 25 Städte und Gemeinden Konfliktpläne erstellt worden. Mit dem Immissionsschutzbericht 2001 soll allen Interessenten, insbesondere den Bürgern und Kommunen sowie der Wirtschaft, den Verbänden und vielen Institutionen, ein detailliertes Informationsmaterial in Form von Zahlen und Fakten über die Immissionssituation in Sachsen-Anhalt zur Verfügung gestellt werden.

An dieser Stelle gilt allen Beteiligten, die auch in diesem Jahr mit großem Engagement an der Erarbeitung des "Immissionsschutzberichtes 2001 Sachsen-Anhalt" mitgewirkt haben, mein herzlicher Dank.

Petra Wernicke

Ministerin für Landwirtschaft und Umwelt des Landes Sachsen-Anhalt

1 Emissionen luftverunreinigender Stoffe

Der Schutz der menschlichen Gesundheit, die Bewahrung der natürlichen Lebensgrundlagen des Menschen und die Erhaltung von Bauten und Baudenkmälern erforderten in den letzten Jahren erhebliche Anstrengungen zum Abbau und zur Verminderung der Umweltbelastungen durch Luftverschmutzung. Die durchgeführten Sanierungsmaßnahmen sowie die umfangreichen wirtschaftlichen Veränderungen in Sachsen-Anhalt machen sich nunmehr in einem für jeden deutlich spürbar geringerem Emissionsniveau der industriellen Anlagen bemerkbar.

Neue anlagenbezogene Rechtsvorschriften mit dem Ziel der weiteren Senkung der Emissionen von Luftschadstoffen erfordern von den Anlagenbetreibern in den nächsten Jahren weitere Sanierungsmaßnahmen, die wiederum zu einer Senkung der Immissionen führen werden.

1.1 Emissionen genehmigungsbedürftiger Anlagen

Die Prüfung und Erfassung der Emissionserklärungen des Jahres 2000 stehen in den zuständigen Behörden vor dem Abschluss, so dass eine Fortschreibung des Landeskatasters mit den Emissionsdaten für das Jahr 2000 in Kürze erfolgen kann.

1.2 Nicht genehmigungsbedürftige Anlagen

Im Bereich der nicht genehmigungsbedürftigen Feuerungsanlagen (Hausbrand und Kleinverbraucher) gibt es gegenüber den im Immissionsschutzbericht 2000 veröffentlichten Daten des Hausbrandkatasters Sachsen-Anhalt keine neueren landesweiten Erhebungen zur Energieträgerstruktur und zu den Emissionen.

Durch das 1995 erstellte Energie- und Emissionskataster Sachsen-Anhalt lagen erstmals für das Bezugsjahr 1994 belastbare Zahlen zur Energieträgerstruktur und zu den Emissionen für den Bereich nicht genehmigungsbedürftige Feuerungsanlagen (Haushalte und Kleinverbraucher) auf Landes-, Regierungspräsidiums-, Landkreis- und Gemeindeebene vor. Eine Fortschreibung des Katasters erfolgte 2000 im Rahmen der Vergabe der Leistung an ein Ingenieurbüro. Damit lagen nun neuere Daten für das Bezugsjahr 1998 und ein Prognosejahr 2005 vor, die im Immissionsschutzbericht 2000 veröffentlicht wurden.

Im Einzelnen sind auf Gemeindeebene enthalten: Angaben zur Energieträgerstruktur der Wohnungen, zum Endenergieverbrauch der Haushalte und der Kleinverbraucher und zu den Emissionen von 17 Schadstoffen.

Die Daten der Fortschreibung des Emissionskatasters Hausbrand und Kleinverbraucher liegen zur weiteren Nutzung in einer Access-Datenbank vor.

Die in Sachsen-Anhalt eingetretene Entwicklung des starken Rückganges der festen Brennstoffe kann auch anhand der im Bereich Haushalt/Kleinverbraucher eingesetzten Braunkohlenbriketts belegt werden. Nach Angaben der Statistik der Kohlewirtschaft e.V. Köln stellt sich die Entwicklung des Brikettabsatzes in Sachsen-Anhalt für die Jahre 1994-2001 wie folgt dar:

Tabelle 1.2.1: Entwicklung des Braunkohlenbrikettabsatzes in Sachsen-Anhalt für den Bereich Haushalt und Kleinverbraucher (Quelle: Statistik der Kohlewirtschaft e.V. Köln)

	Braunkohl	unkohlenbrikettabsatz in t						
	1994	1995	1996	1997	1998	1999	2000	2001
Gesamt	679.824	456.675	297.833	189.523	83.916	72.979	58.627	52.371
davon aus Revier:								
Mitteldeutschland	313.854	158.203	90.396	72.022	26.664	19.835	13.938	13.957
Lausitz	365.596	297.805	207.298	117.449	57.180	47.333	35.752	33.345
Rheinland	374	667	139	52	73	5.811	8.937	5.069

Die Absatzzahlen weisen bis 1998 sehr starke Rückgänge auf, die ab 1999, 2000 und 2001 bedeutend geringer ausfallen. Auffallend ist die Zunahme bei den rheinischen Braunkohlenbriketts in den Jahren 1999 und 2000 und bei der Gesamtmenge die geringe Abnahme im Jahr 2001 gegenüber 2000.

Des Weiteren wirkte sich auf die Emissionssenkung aus, dass entsprechend der Kleinfeuerungsanlagen-Verordnung (1. BImSchV) ab 01.01.1995 keine festen Brennstoffe mit einem Schwefelgehalt von > 1 % eingesetzt werden dürfen. Um diesen Anforderungen gerecht zu werden, wurden die schwefelreichen mitteldeutschen Braunkohlenbriketts vom Hersteller (MIBRAG) durch ein vorbehandeltes Brikett unter Zugabe von Additiven abgelöst. Der Einsatz erfolgte 1994 schon teilweise und ab 1995 vollständig.

Zur Qualitätsüberwachung wurde 1994 zwischen dem Hersteller MIBRAG und den Umweltbehörden der Länder Sachsen-Anhalt, Sachsen und Thüringen eine "Erklärung zur Qualitätsüberwachung der Herstellung vorbehandelter Braunkohlenbriketts für die Anwendung in Kleinfeuerungsanlagen" vereinbart.

Die Überwachung bezieht sich sowohl direkt auf den Brennstoff (Schwefelgehalt) als auch auf die Bestimmung der SO_2 -Emissionen. So wird monatsweise aus den für die allgemeine Qualitätskontrolle der Brennstoffgrößen vorgesehenen Proben der Gesamtschwefelgehalt nach DIN 51 724 Teil 1 bestimmt. Zur Bestimmung der SO_2 -Emissionen werden vierteljährlich an einer Quartalssammelprobe von einer nach § 26 und § 28 BImSchG zugelassenen Stelle an einem Dauerbrandofen Verbrennungsversuche nach einer vom LAU und TLU anerkannten Messvorschrift an den entnommenen Briketts durchgeführt. Aus 6 Verbrennungszyklen wird der Mittelwert des emissionswirksamen Schwefels für die ieweilige Quartalsprobe ermittelt.

Die Forderungen des § 3 (2) der 1. BlmSchV an den Brennstoff Braunkohlenbriketts gelten als eingehalten, wenn das Ergebnis des Verbrennungsversuches einen emissionswirksamen Schwefelgehalt von nicht größer als 0,90 % erbringt.

Eine Auflistung der erzielten Quartalswerte für die jeweiligen Jahresscheiben ist in Tabelle 1.2.2 enthalten.

Tabelle 1.2.2: Entwicklung des Qualitätswertes (emissionswirksamer Schwefelgehalt) für vorbehandelte Braunkohlenbriketts gemäß 1. BlmSchV bei der MIBRAG mbH

		emissionswirksamer Schwefelgehalt in %					
	19	95	1996	1997	1998		
Werk	Deuben*	Phönix	Phönix	Phönix	Phönix		
1. Quartal	1,08	-	0,97	0,90	0,79		
2. Quartal	0,83	0,87	0,87	0,90	0,78		
3. Quartal	0,89	0,94	0,84	0,83	0,89		
4. Quartal	0,97	0,95	0,78	0,85	0,90		

	emissionswirksamer Schwefelgehalt in %					
	1999	2000	2001			
Werk	Phönix	Phönix Deuben**	Deuben			
1. Quartal	0,84	0,90	0,86			
2. Quartal	0,82	0,87	0,89			
3. Quartal	0,84	0,81	0,86			
4. Quartal	0,87	0,90	0,86			

^{*} Das Werk Deuben produziert aus Gründen des Absatzes ab Dezember 1995 keine Briketts mehr.

Nachdem 1995 Probleme in der Einhaltung des emissionswirksamen Schwefelgehaltes aufgetreten sind, wurden beim Hersteller ab Januar 1996 Maßnahmen zur selektiven Bereitstellung von schwefelarmer Brikettierkohle eingeleitet. Danach sind keine Überschreitungen des Qualitätswertes (0,90 % emissionswirksamer Schwefelgehalt) für vorbehandelte Braunkohlenbriketts mehr festgestellt worden.

1.3 Verkehrsbedingte Emissionen

Die Zahl der insgesamt zugelassenen Kraftfahrzeuge stieg in Sachsen-Anhalt im Jahr 2001 um 5 761 auf 1 522 925 Kfz (+0,4 %). Bei den Pkw war ein Zuwachs von 0,2 % auf 1 305 906 Pkw zu verzeichnen. Wie auch im vorangegangenen Jahr ist die höchste Zuwachsrate bei den motorisierten Zweirädern zu verzeichnen (6,6 %; Anstieg auf 63 772 Kräder). Damit hat sich die Entwicklung der Kfz-Zahlen im Vergleich zu den Vorjahren spürbar verlangsamt.

^{**} Das Werk Phönix wurde am 5.7. abgefahren und am 7.8. wurde dafür die Produktion im Werk Deuben aufgenommen

Beim Zuwachs von Kraftfahrzeugen insgesamt liegt Sachsen-Anhalt unter dem Durchschnitt aller Bundesländer (+1,6 %). Aber auch im Bundesdurchschnitt verlangsamte sich die Entwicklung der Fahrzeugzahlen im Jahr 2001 im Vergleich zum Jahr 2000.

Die Entwicklung des Bestandes der Kfz-Arten auf dem Gebiet des Landes Sachsen-Anhalt in der Zeit von 1980 bis zum Jahr 2001 zeigt die folgende Abbildung 1.3.1.

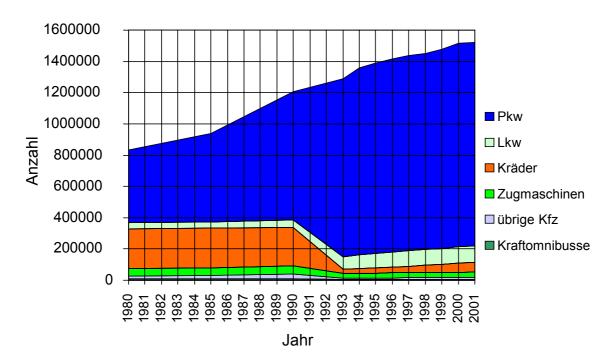


Abbildung 1.3.1: Entwicklung der Kfz-Zahlen auf dem Gebiet des Landes Sachsen-Anhalt

Die Abbildung 1.3.2 zeigt die einwohnerbezogene Pkw-Dichte für die Landkreise und kreisfreien Städte im Land.

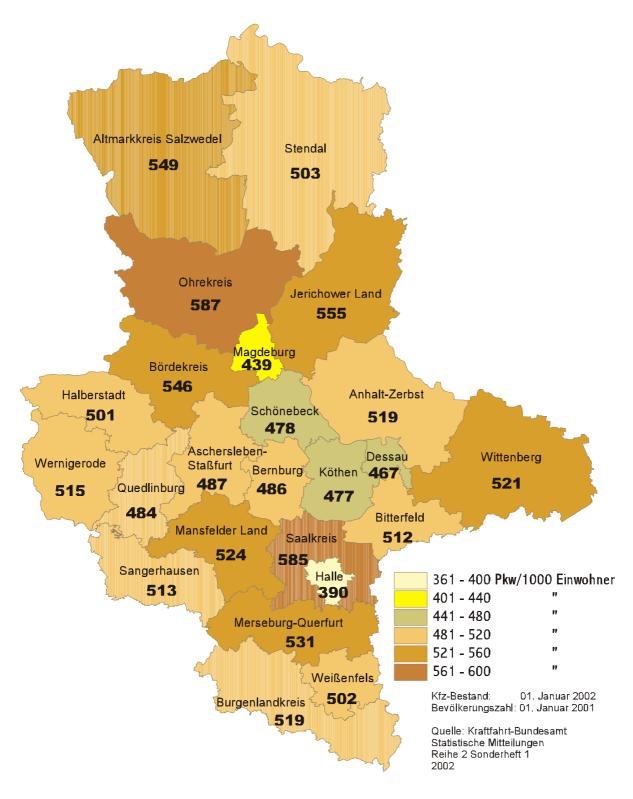


Abbildung 1.3.2: Einwohnerbezogene Pkw-Dichte in den Kreisen und kreisfreien Städten

Im Land Sachsen-Anhalt wurde zum 1. Jan. 2002 eine durchschnittliche Pkw-Dichte von 499 Pkw/1000 Einwohner erreicht. Die einwohnerbezogene Pkw-Dichte im Land Sachsen-Anhalt zeigt allerdings mit 390 Pkw/1000 Einwohner in der Stadt Halle und 587 Pkw/1000 Einwohner im Ohrekreis erhebliche regionale Unterschiede. Im Bundesdurchschnitt beträgt dieser Wert 540 Pkw/1000 Einwohner¹.

¹ Bevölkerungsstand 01.01.2001

7

.

Ausschlaggebend für die Höhe der Emissionen sind allerdings die Fahrleistungen und die Zusammensetzung der Kfz-Flotte sowie die einzelnen Verkehrssituationen unter denen die Fahrleistungen erbracht werden. In der Abbildung 1.3.3 sind die Jahresfahrleistungen der Kraftfahrzeuge in der Bundesrepublik Deutschland im Zeitraum von 1970 bis zum Jahr 2000 dargestellt. Ab dem Jahr 1991 beinhalten die Werte auch die Fahrleistungen der Neuen Bundesländer. Insgesamt sind die Fahrleistungen des Kfz-Verkehrs ständig gestiegen, auch wenn in einzelnen Jahren im Vergleich zu den Vorjahren mitunter geringere Werte erreicht wurden (z. B. 1994, 2000). Perspektivisch muss ebenfalls von weiter wachsenden Fahrleistungen des Straßenverkehrs ausgegangen werden.

Abbildung: 1.3.3: Entwicklung der Jahresfahrleistungen aller Kfz in der Bundesrepublik (bis einschließlich 1990 nur alte Bundesländer) Quelle: BASt

Einen überwiegend entgegengesetzten Trend zeigen die Entwicklungen der Schadstoffemissionen des Straßenverkehrs, wie aus den Darstellungen der Abbildung 1.3.4 deutlich wird. Die Kohlendioxidemissionen, die im Wesentlichen dem Kraftstoffverbrauch folgen, zeigen allerdings nach wie vor eine andere Tendenz. Die Emissionen des Distickstoffoxids konnten in den letzten Jahren auf konstantem Niveau stabilisiert werden. Sie resultieren überwiegend aus dem Einsatz des geregelten Dreiwegekatalysators. Infolge der technischen Weiterentwicklung der Katalysatoren ergab sich eine Senkung der spezifischen Lachgasemissionen. Bei den restlichen dargestellten Schadstoffen ist es gelungen, durch technische Maßnahmen der Abgasnachbehandlung, der Motoren- und Fahrzeugweiterentwicklung sowie durch die Verbesserung der Kraftstoffe deutliche Reduktionen der jährlichen Emissionen trotz ansteigender Fahrleistungen und steigenden Kraftstoffverbrauchs zu erreichen. Den größten Anteil an dieser Entwicklung hatte die Einführung des geregelten Dreiwegekatalysators.

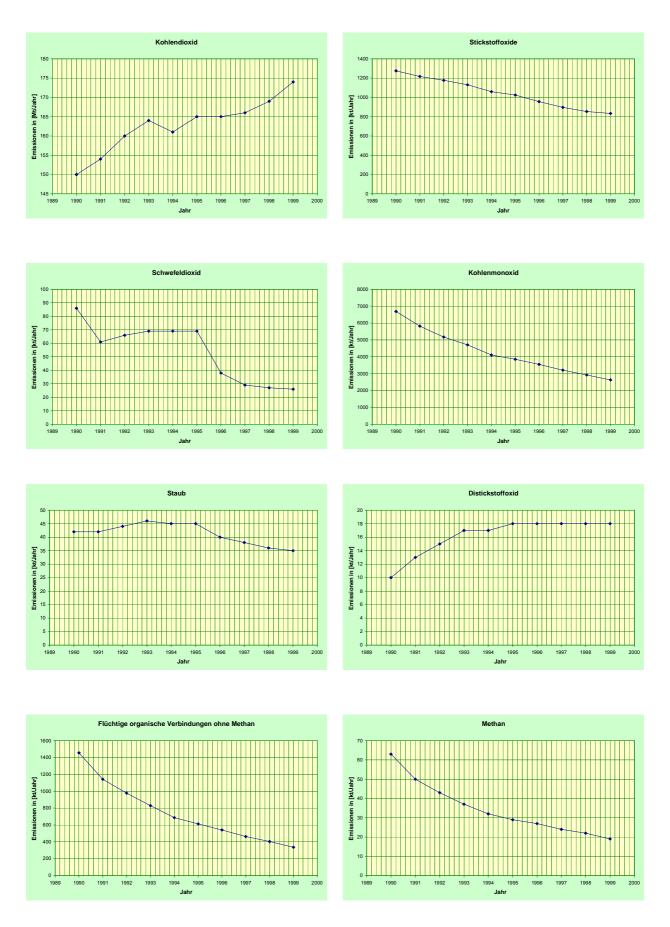


Abbildung 1.3.4: Entwicklung der Schadstoffemissionen des Straßenverkehrs in Deutschland von 1990 bis 1999 Quelle: Umweltbundesamt

1.4 Gesamtemissionen in Sachsen-Anhalt

Erst nach abschließender Auswertung der Emissionserklärungen für die industriellen Anlagen ist eine Fortschreibung der Gesamtemissionsbilanz sinnvoll.

1.5 Klimaschutz und Energie

1.5.1 Kohlendioxid-Emissionen

Die Reduktion der Kohlendioxid- Emissionen stellt einen zentralen Punkt des nationalen Klimaschutzprogramms dar.

Wesentliche Instrumente der Klimarahmenkonvention und des Kyoto-Protokolls sind der Emissionsrechtehandel sowie projektbezogene Mechanismen vor allem in den Transformationsländern Mittelund Osteuropas (Joint Implementation) und den Entwicklungsländern (Clean-Development-Mechanism).

Mit dem Richtlinienentwurf der Europäischen Kommission vom 23.10.2001 über einen Rahmen für den Handel mit Treibhausgasemissionen in der Europäischen Gemeinschaft wurde eine Grundlage für ein mögliches Emissionshandelssystem geschaffen.

Dieser Richtlinienentwurf hat zunächst einen umfassenden Diskussionsprozess ausgelöst.

In den Emissionshandel sollen zunächst nur die CO₂-Emissionen folgender industrieller Tätigkeiten einbezogen werden:

- Feuerungsanlagen mit einer Feuerungswärmeleistung > 20 MW,
- Anlagen der Mineralölverarbeitung,
- Kokereien.
- Röst- und Sinteranlagen für Metallerz,
- Anlagen für die Herstellung von Roheisen oder Stahl mit einer Kapazität > 2,5 Tonnen/Tag,
- Anlagen zur Zementherstellung mit einer Kapazität von über 500 Tonnen/Tag bzw. zur Kalkherstellung mit einer Kapazität von über 50 Tonnen/Tag,
- Anlagen zur Herstellung sonstiger Baustoffe und Keramik,
- Anlagen zur Herstellung von Glas und Glasfasern mit einer Schmelzkapazität über 20 Tonnen/Tag.
- Anlagen zur Herstellung von Papier oder Pappe mit einer Kapazität > 20 Tonnen/Tag sowie
- Anlagen zur Herstellung von Zellstoff.

(Die aufgeführten Anlagen zur Herstellung von Roheisen oder Stahl bzw. Röst- und Sinteranlagen werden in Sachsen-Anhalt nicht betrieben.)

An dieser Stelle soll ein Überblick zu den CO₂-Emissionen der vom Emissionshandel betroffenen Branchen und Anlagen gegeben werden.

Grundlage für die CO₂-Bilanzierung bilden die Emissionserklärungen mit den darin ausgewiesenen Brennstoffmengen.

Feuerungsanlagen

Die Feuerungsanlagen haben den weitaus größten Anteil der CO₂-Emissionen. Aus den Emissionserklärungen ergeben sich folgende jährliche Gesamtemissionen:

1992: 19.000.000 Tonnen 1994: 15.000.000 Tonnen 1996: 13.200.000 Tonnen 2000: 12.800.000 Tonnen .

Der deutliche Rückgang vom Jahr 1992 bis zum Jahr 2000 ist Folge von Anlagenstilllegungen sowie Altanlagensanierungen und wird teilweise durch die Inbetriebnahme eines braunkohlegefeuerten Großkraftwerkes ausgeglichen.

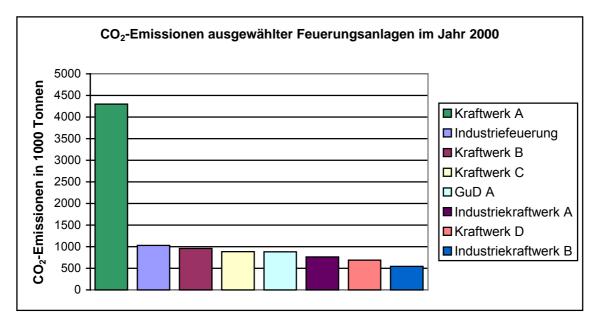


Abb. 1.5.1: CO₂-Emissionen ausgewählter Feuerungsanlagen im Jahr 2000 (Emission > 500000 Tonnen)

Steine und Erden, Glas, Keramik, Baustoffe

In diesen Bereich fallen in Sachsen-Anhalt Zementwerke, Flachglasanlagen, Ziegelwerke sowie verschiedene Kalkbrennanlagen und Anlagen zur Herstellung von Baustoffen.

Bei diesen Anlagen ist neben dem brennstoffbedingten CO₂ auch das aus den eingesetzten Rohstoffen entstehende CO₂ zu bilanzieren.

Bei den Anlagen zum Brennen von Kalk ist zwischen solchen Kalkbrennanlagen, die mit dem Ziel verkaufsfähigen Kalk herzustellen betrieben werden, und Anlagen, die Kalk als Zwischenprodukt für die Herstellung eines anderen Erzeugnisses einsetzen (Sodawerke, Zuckerfabriken, auch Zellstoffwerke), zu unterscheiden.

In diesen Fällen wird neben dem Kalk auch das entstehende CO_2 als Prozessgas benötigt. Somit ergibt sich ein unterschiedliches Emissionsverhalten. Während bei den Zement- und Kalkwerken die gesamte CO_2 -Menge in die Atmosphäre geleitet wird, ist das emittierte CO_2 bei den anderen hier genannten Anlagen wesentlich geringer.

Aus den Daten, die aus den Emissionserklärungen von 1996 bzw. 2000 zur Verfügung stehen, sind folgende Anteile für das Brennstoff-CO₂ an der gesamten CO₂-Emission abzuleiten:

Zementherstellung: 37 % Sodaherstellung: 23 % Zuckerherstellung: 29 % Flachglasherstellung: 70 %.

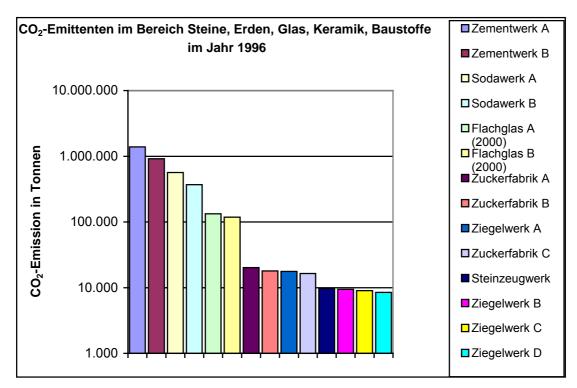


Abb. 1.5.2: CO₂-Hauptemittenten im Bereich Steine, Erden, Glas, Keramik, Baustoffe

Raffinerie

Für die neue Raffinerie wird auf der Grundlage des Durchsatzes für 1998 sowie einer spezifischen Emission von 218 kg CO_2 /Tonne Rohöl eine CO_2 -Emission von 1.850.000 Tonnen abgeschätzt.

Industrielle Hauptemittenten in Sachsen-Anhalt

Die nachfolgende Abbildung stellt den Erkenntnisstand zu den CO₂-Hauptemittenten dar.

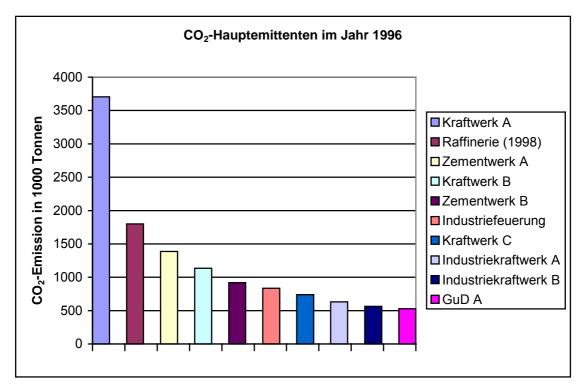


Abb. 1.5.3: CO₂-Hauptemittenten im Jahr 1996

Im industriellen Bereich betragen die CO_2 -Emissionen derzeit ca. 18,5 Mio. Tonnen. Hinzu kommen aus dem Bereich Verkehr* ca. 4,8 Mio. Tonnen und aus dem Bereich Haushalte/Kleinverbraucher* ca. 4,6 Mio. Tonnen CO_2 .

(*CO₂-Bilanz der Bundesländer LAK Energiebilanzen)

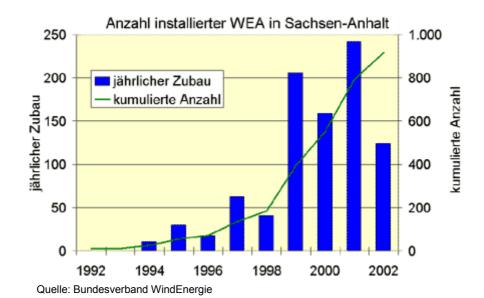
Somit ergibt sich eine CO₂-Gesamtemission für Sachsen-Anhalt von ca. 27,9 Mio. Tonnen.

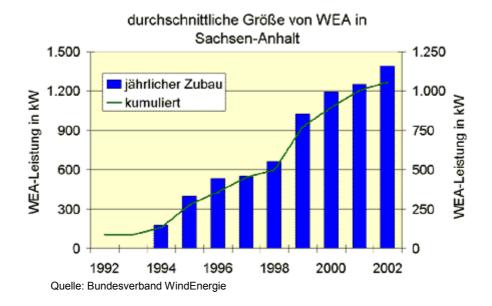
Bei sich erholenden wirtschaftlichen Aktivitäten und damit verbundenen steigendem Energieverbrauch ist speziell für Sachsen-Anhalt von einem weiteren Anstieg auszugehen.

Für eine Ausgestaltung des beabsichtigten Emissionshandels ist eine weitere Verbesserung der Datenbasis zu den industriellen Anlagen erforderlich. Insbesondere ist die Datenlage für das Basisjahr 1990 unter Mitwirkung der Anlagenbetreiber zu verbessern.

Im Weiteren ist eine Bewertung der Anlagen in Sachsen-Anhalt im Vergleich zu den spezifischen CO₂-Emissionen aus den Selbstverpflichtungen der Branchenverbände der deutschen Industrie sowie zu spezifischen CO₂-Kenngrößen aus den europäischen Dokumenten zur Best Verfügbaren Technik sinnvoll.

1.5.2 Windenergienutzung in Sachsen-Anhalt


Die Nutzung der Windenergie in Sachsen-Anhalt besitzt weiter zunehmende Tendenz. Im Folgenden sind hierzu landesspezifische Daten zusammengestellt. (Quelle: Bundesverband WindEnergie e.V.)


Quelle: Bundesverband WindEnergie e.V.

Windenergieanlagen in Deutschland (Stand 30.06.2002)

Jahr	Leistu	Leistung		Anzahl		
	kumuliert	Zubau	kumuliert	Zubau	kumuliert	Zubau
,	MW	MW	Stück	Stück	kW	kW
1990	68	41	548	255	123,2	160,8
1991	110	42	806	258	135,9	162,8
1992	183	74	1.211	405	151,1	181,5
1993	334	155	1.797	586	186,0	264,3
1994	643	309	2.617	834	245,7	370,6
1995	1.137	505	3.655	1.070	310,9	472,2
1996	1.546	428	4.326	806	357,5	530,6
1997	2.082	534	5.193	849	400,8	628,9
1998	2.875	793	6.205	1.010	463,3	785,6
1999	4.445	1.568	7.875	1.670	564,4	938,7
2000	6.095	1.665	9.359	1.490	651,2	1.117,6
2001	8.754	2.659	11.438	2.079	765,3	1.279,0
2002	9.842	1.088	12.266	828	802,4	1.314,0

Windenergie in den Bundesländern (Stand 30.06.2002)

Bundesland / freie Stadt	Stadt Leistung		Anzahl		Größe	
	kumuliert	Zubau	kumuliert	Zubau	kumuliert	Zubau
	MW	MW	Stück	Stück	kW	kW
Niedersachsen	2.727,3	300,4	3.249	198	839,4	1.517,2
Schleswig-Holstein	1.629,3	77,9	2.408	66	676,6	1.180,3
Nordrhein-Westfalen	1.159,8	150,0	1.613	135	719,0	1.111,1
Sachsen-Anhalt	968,7	172,4	917	124	1.056,4	1.390,3
Brandenburg	917,4	148,7	982	112	934,2	1.327,7
Mecklenburg-Vorpommern	714,0	32,5	895	26	797,8	1.250,0
Sachsen	448,5	32,5	541	24	829,0	1.354,2
Rheinland-Pfalz	416,1	43,5	511	32	814,3	
Hessen	285,6	32,0	422	28	676,8	1.142,9
Thüringen	246,7	36,5	276	29	893,8	1.258,6
Bayern	123,4	23,2	175	25	705,1	928,0
Baden-Württemberg	140,2	32,7	171	30	819,9	1.090,0
Hamburg	23,8	0,0	44	0	540,9	0,0
Saarland	19,9	1,5	28	1	710,7	0,0
Bremen	17,1	4,0	29	2	589,7	0,0
Berlin	0,0	0,0	0	0	0,0	0,0
		_	-			· · · · · · · · · · · · · · · · · · ·
Summe	9.837,8	1.087,8	12.261	832	802,4	1.307,5

1.6 Emissionsmessungen

Im Jahr 2001 (Stand der Berichterstattung: 30.04.2002) wurden im Land Sachsen-Anhalt an 480 Quellen genehmigungsbedürftiger Anlagen erstmalige und wiederkehrende Emissionsermittlungen durch private Messinstitute (sogenannte nach § 26 BlmSchG bekannt gegebene Stellen) durchgeführt. Die durch die zuständigen Behörden angeordneten Messungen sind technologiebezogen in Tabelle 1.6.1 im Anhang aufgelistet. Unter Berücksichtigung dessen, dass zum Zeitpunkt der Berichterstattung eine relativ hohe Anzahl von 76 Messberichten zu den für das Jahr 2001 geplanten Ermittlungen noch nicht fertig gestellt war bzw. noch nicht dem LAU übermittelt worden war, ist festzustellen, dass Trendaussagen nur bedingt möglich sind. Obwohl die Abbildung 1.6.1 eine Abnahme der Anzahl von Ermittlungen ausweist, ist deshalb anzunehmen, dass die Anzahl von Ermittlungen pro Jahr seit 1997 nahezu konstant geblieben ist.

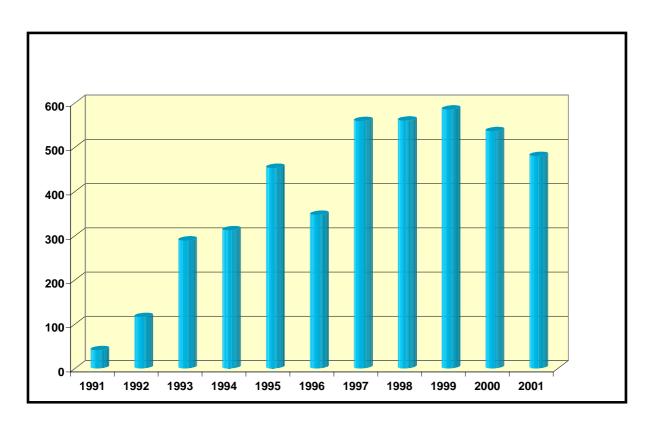


Abbildung 1.6.1: Anzahl quellenbezogener Ermittlungen der Emissionen von Luftschadstoffen im Jahresvergleich

Wie in den Vorjahren ist auch 2001 wiederum nur ein geringer Anteil (26 von 50) der für die messtechnische Ermittlung der Emissionen von Luftschadstoffen und Gerüchen in Sachsen-Anhalt bekannt gegebenen privaten Messinstitute auf behördliche Veranlassung tätig gewesen (Abbildung 1.6.2). Dabei war vorrangig eine Stelle, die 39 % aller Ermittlungen durchführte, tätig. Dieser hohe Anteil einer Stelle an den Ermittlungen war bisher in Sachsen-Anhalt nicht zu verzeichnen. Weitere drei Messinstitute führten 36 % der Messaufträge aus, der verbleibende Anteil von 25 % aller Ermittlungen verteilt sich auf 22 Stellen, von denen 17 weniger als 5-mal tätig geworden sind. Zählt man unselbständige Tochterunternehmen hinzu, haben vier der fünf vorrangig tätig gewesenen

Stellen ihren Sitz im Land Sachsen-Anhalt.

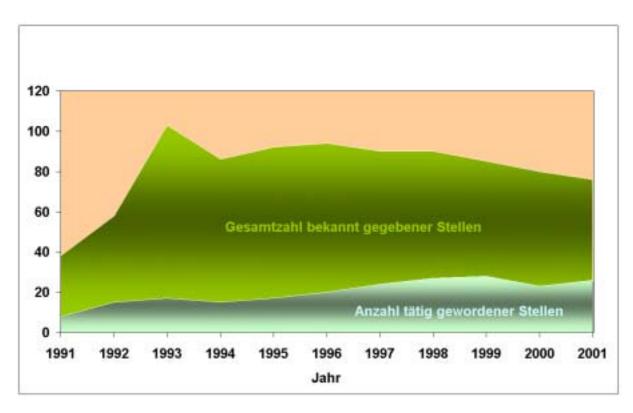


Abbildung 1.6.2: In Sachsen-Anhalt bekannt gegebene und tätig gewordene Stellen im Jahresvergleich (Bereiche Emissionen von Luftschadstoffen und Gerüchen)

Die Zuordnung der Emissionsermittlungen und Kalibrierungen (bzw. Anlagenstandorte) zu den Zuständigkeitsbereichen der Überwachungsbehörden zeigt nachfolgende Grafik (Abbildung 1.6.3).

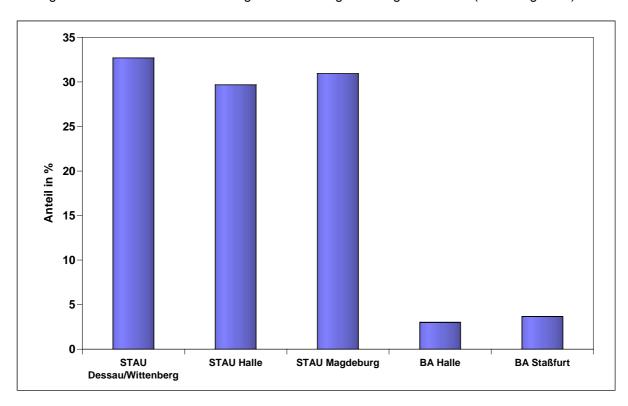


Abbildung 1.6.3: Emissionsermittlungen nach Zuständigkeitsbereichen 2001

Bei den im Jahre 2001 insgesamt durchgeführten quellenbezogenen Ermittlungen handelt es sich um Emissionsmessungen an einer Vielzahl unterschiedlicher Anlagentypen. Sie sind vorwiegend den Bereichen Wärmeerzeugung, Baustoffe und der chemischen Industrie zuzuordnen.

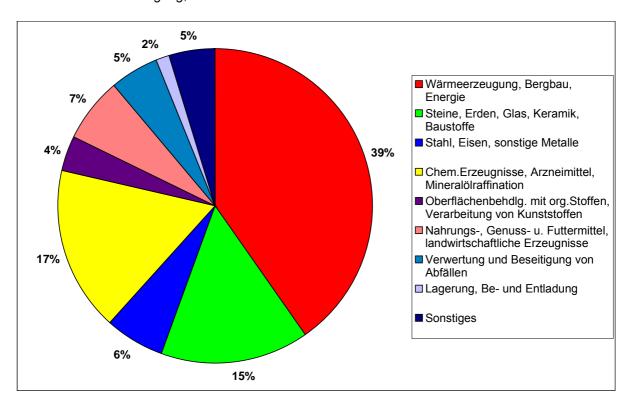


Abbildung 1.6.4: Emissionsermittlungen an Anlagen nach 4. BlmSchV

Alle Emissionsmessberichte zu Messungen im vom Gesetzgeber geregelten Bereich sind entsprechend dem bundeseinheitlichen und in Sachsen-Anhalt vorgeschriebenen Musterbericht über die Durchführung von Emissionsmessungen abgefasst und werden nach Eingang im LAU ebenso wie die Kalibrier- und Funktionsprüfungsberichte in der Datenbank EMBERESY erfasst.

Diese Erfassung beinhaltet unter anderem Angaben zur Anlage (Standort, Betreiber, Zuordnung entsprechend 4. BlmSchV), zur Messung (Messanlass, durchführende Stelle, gemessene Schadstoffkomponenten, gemessene maximale Emissionswerte) sowie zur Überwachung der Tätigkeit der Messstellen durch die Behörden (Forderungen zu Nachbesserungen von Messplänen oder Messberichten, Nachmessungen, Vor-Ort-Kontrollen). Jede Eingabenart ist mit einem Recherchekriterium hinterlegt, so dass eine Recherche nach Einzel- oder Gruppenangaben möglich ist.

Neben der Prüfung aller Ermittlungsberichte durch die zuständigen Überwachungsbehörden, ob mit der Messung der Messanordnung entsprochen wurde und die jeweiligen Emissionsbegrenzungen eingehalten sind, erfolgt durch das LAU stichprobenartig oder auf Anforderung eine Begutachtung der Berichte hinsichtlich Messdurchführung, angewandter Messverfahren und Einhaltung des technischen Regelwerkes. Beim Auftreten von Mängeln werden Nachbesserungen bis hin zu Nachmessungen gefordert.

Von den geprüften Messberichten und Messplänen entsprachen immerhin ca. 40 % in mehr oder minder schwerwiegenden Punkten nicht den Anforderungen des technischen Regelwerkes oder der Messaufgabe.

Insgesamt ist einzuschätzen, dass gegenüber den Vorjahren die Beanstandungen von Messberichten und Messplänen nicht zurückgegangen sind. Hierbei ist zu berücksichtigen, dass vorrangig "Problemfälle" geprüft worden sind. Es ist weiterhin offensichtlich so, dass der aus dem Wettbewerb resultierende zunehmende Kostendruck dazu führt, dass bei den Stellen personal- und damit kostenintensive qualitätssichernde Maßnahmen vernachlässigt werden. Hier sind als häufig auftretende Mängel eine unzureichende Messvorbereitung und zu geringe Personalstärke bei der Messdurchführung zu benennen. Gerade Letzteres hat häufig eine nicht normenkonforme Probenahme zur Folge. Aufgabe der Behörden sollte es sein, diesem Negativtrend weiter entgegenzuwirken. Unangemeldete Vor-Ort-Kontrollen durch Mitarbeiter des LAU zur Überprüfung der Messdurchführung sollen mit dazu beitragen.

Im Jahr 2001 erfolgten an 18 Anlagen mit 37 Emissionsquellen Kalibrierungen fest eingebauter kontinuierlicher Emissionsmesseinrichtungen (s. Tabelle 1.6.1 Anhang). Kalibriert wurden insgesamt 83 Messeinrichtungen, darunter z.B. 12 Staubmessgeräte, 6 NO_X-, 3 NO-, 8 CO-, 10 SO₂-, 18 Rußmesseinrichtungen, 3 Volumenstrommessgeräte, 1 Quecksilbermessgerät sowie 15 O₂- Messgeräte. Außerdem wurden an 79 Anlagen (131 Quellen) Funktionsprüfungen fest eingebauter kontinuierlicher Emissionsmesstechnik durchgeführt (s. Tabelle 1.6.1 Anhang). Geprüft wurden insgesamt 375 Messgeräte, darunter z.B. 38 Staubmessgeräte, 54 NO_X-, 19 NO-, 73 CO-, 28 SO₂-, 35 Rußmesseinrichtungen, 9 Messgeräte für den Volumenstrom, 2 Quecksilbermessgeräte sowie 87 O₂- Messgeräte. Da Funktionsprüfungen in der Regel jährlich durchzuführen sind, belegt die gegenüber dem Vorjahr gleich gebliebene Anzahl, vorbehaltlich der großen Anzahl noch fehlender Berichte, einen stagnierenden Ausstattungsgrad der Anlagen mit kontinuierlich arbeitenden Messgeräten (Abbildung 1.6.5).

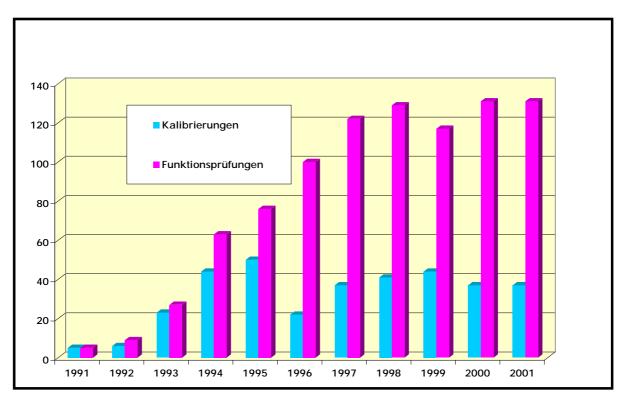


Abbildung 1.6.5: Anzahl der Kalibrierungen und Funktionsprüfungen kontinuierlich arbeitender Messeinrichtungen im Jahresvergleich

Alle Kalibrier- und Funktionsprüfungsberichte werden in Sachsen-Anhalt seit dem 01.05.1997 nach dem diesbezüglichen bundeseinheitlichen vom Länderausschuss für Immissionsschutz zur Anwendung empfohlenen Musterbericht abgefasst.

Durch das Landesamt für Umweltschutz Sachsen-Anhalt wurden 2001 insgesamt 8 Emissionsmessungen komplexer Art durchgeführt. Sie sind in Tabelle 1.6.2 im Anhang aufgelistet.

An der Kleinfeuerungsemissionsversuchsanlage (KEVA) wurden Untersuchungen an einem Durchbrandofen zur Emission von partikelgebundenem und gasförmigem Quecksilber an drei Sorten Braunkohlenbriketts unterschiedlicher Provenienz durchgeführt.

Das in Abstimmung mit dem Umweltbundesamt bereits 1998 begonnene umfangreiche Messprogramm zur fraktionierten Ermittlung der Feinstaubemissionen (PM10, PM2,5, PM1,0) wurde 2001 mit Untersuchungen zur Ermittlung von Feinstaubemissionen aus einer Anlage zur Herstellung von Zement (Drehrohrofen) fortgesetzt.

An der Raumabsaugung einer Anlage zur Herstellung von Akkumulatoren wurde in Amtshilfe für die zuständige Überwachungsbehörde die Staubemission gemessen. Ebenfalls auf Anforderung der zuständigen Überwachungsbehörde wurden an einem Schachtofen zum Schmelzen von Sekundärkupfer die relevanten Emissionskonzentrationen ermittelt. Anlass war hier die Änderung der Einsatzstoffe. Weitere Messungen in Amtshilfe für Überwachungsbehörden erfolgten zur Ermittlung der Fluorwasserstoff-Emissionen einer Anlage zum Brennen von Keramik (Tunnelofen) sowie zur Bestimmung der

Geruchsstoffkonzentrationen an einer Anlage zur Herstellung von Riechstoffen und Aromachemikalien auf Grund von Anwohnerbeschwerden über Geruchsbelästigungen.	

2 Immissionen luftverunreinigender Stoffe

2.1 Konzeption der Immissionsmessungen

Die EU-Rahmenrichtlinie über die Beurteilung und Kontrolle der Luftqualität mit ihren Tochterrichtlinien sowie die aktuelle nationale Gesetzgebung auf dem Gebiet des Immissionsschutzes der Bundesrepublik Deutschland (BImSchG) verlangen eine kontinuierliche Beurteilung der Luftqualität in Sachsen-Anhalt, für die die Zuständigkeit beim LAU liegt.

Für diese Immissionseinschätzungen spielen Messungen eine entscheidende Rolle.

Der größte Teil der Immissionsmessungen wird im Rahmen des Luftüberwachungs- und Informationssystems Sachsen-Anhalt (LÜSA) durchgeführt. Darüber hinaus besteht ein etabliertes Depositionsmessnetz. Ergänzt werden diese Messungen durch spezielle Messprogramme wie z.B. das Messprogramm B91, Passivsammlermessprogramme und Messungen mit netzunabhängigen Probenahmesystemen (NUPS).

Luftüberwachungs- und Informationssystem Sachsen-Anhalt

Entscheidenden Einfluss auf die Entwicklung des LÜSA hat derzeit die Umsetzung der neuen Generation von EU-Richtlinien auf dem Gebiet des Immissionsschutzes. Dadurch wird bei Reduzierung des Messnetzumfanges auf die Mindestanforderungen die Entwicklung zu einem integrierten Mess- und Informationssystem weiter vorangetrieben. Die Hauptaufgaben des LÜSA sind:

- Beurteilung und Kontrolle der Luftqualität sowie Information der Bevölkerung gemäß der EU-Rahmenrichtlinie 96/62/EG und ihrer Tochterrichtlinien (z.B. EU-Richtlinien 1999/30/EG und 2000/69/EG),
- Ozon-Überwachung, Analyse der Ozonbildung und -transporte sowie Information der Bevölkerung gemäß EG-Richtlinie über die Luftverschmutzung durch Ozon (2002/3/EG),
- Erfassung und Kontrolle verkehrsbedingter Immissionen gemäß der 23. BImSchV (Verordnung über die Festlegung von Konzentrationswerten vom 16.12.1996, BGBI. Teil 1 Nr. 66 S. 1962).
- Kontinuierliche Zustandserfassung und Trendbeobachtung luftverunreinigender Stoffe mit der gleichzeitigen Erfassung meteorologischer Parameter,
- Bildung einer Datengrundlage zur Festlegung und Kontrolle von Luftreinhaltemaßnahmen sowie deren Ursachenanalyse,
- Einschätzung und Bewertung der Ausbreitungsbedingungen bei Schadensereignissen auf der Basis orts- und zeitnaher meteorologischer Messdaten,
- Information der Öffentlichkeit über den aktuellen Stand und die langfristige Entwicklung der Immissionssituation in Sachsen-Anhalt auf multimedialer Ebene gemäß dem Umweltinformationserlass (RdErl. des MU MBI. LSA Nr. 8/1993 vom 19.1.1993),
- Ausbau des Immissionskatasters als Basis für die Beurteilung der Luftqualität,
- Erzeugung der Datengrundlage für das Umweltinformationssystem (UIS) sowie für das europäische Luftmessnetz (EURO-AIRNET) gemäß EU-Ratsentscheidung 97/101/EG vom 27.1.1997 und 2001/752/EG vom 17.10.2001,
- Beitrag zum Waldschadensmonitoring im Euro-Level II-Programm.

Infolge der Anpassung an die Forderungen der neuen EU-Rahmenrichtlinie ergaben sich im Jahr 2001 Änderungen im Messnetz, die in der Tabelle 2.1 zusammengefasst sind.

Tabelle 2.1: Änderungen im LÜSA im Jahr 2001

Station	Änderung	Datum
Dessau/Albrechtsplatz	Inbetriebnahme der Verkehrsmessstation	23.02.01
Wolmirstedt/OT Elbeu	Inbetriebnahme der mobilen Kleinmessstation	12.10.01
Schönebeck	Stilllegung der Station	31.12.00
Magdeburg/Zentrum	Stilllegung der Station	31.12.00
Halle/Zentrum	Stilllegung der Station	31.12.00
Bad Dürrenberg	Stilllegung der Station	31.12.00
Dessau/Verkehr	Stilllegung der Station (Umsetzung nach Dessau/Albrechtsplatz)	15.08.00
Sangerhausen/Verkehr	Umsetzung der Station nach Wolmirstedt/OT Elbeu	08.10.01
Burg	Umrüstung FH62IN auf PM10 mit PNS-Heizung	13.06.01
Pouch	Umrüstung FH62IN auf PM10 mit PNS-Heizung	31.07.01
Schkopau	Umrüstung FH62IN auf PM10 mit PNS-Heizung	01.08.01
Wittenberg	Umrüstung FH62IN auf PM10 mit PNS-Heizung	13.06.01
Dessau/Albrechtsplatz	Installation TEOM 1400a mit PM10-Kopf	17.09.01
Greppin	Umrüstung TEOM 1400a mit PM10-Kopf	12.09.01
Leuna	Installation TEOM 1400a mit PM10-Kopf	13.09.01
Magdeburg/Zentrum Ost	Umstellung auf Kleinfiltergerät mit PM10-Kopf	03.02.01
Hettstedt	DHA80 (intern, vormals Halle/Nord) mit PM10-Kopf aufgebaut	02.08.01
Dessau/Albrechtsplatz	Erweiterung um Ethylbenzol sowie para-, meta-, ortho-Xylole	04.04.01
Magdeburg/West	Erweiterung um Ozon	09.04.01
Aschersleben	Ruß (RP 5400) Erhöhung der Mittelungszeit von 1h auf 3h	27.03.01
Wolmirstedt/OT Elbeu	Ruß (RP 5400) Erhöhung der Mittelungszeit von 1h auf 3h	27.03.01
Sangerhausen/Verkehr	Ruß (RP 5400) Erhöhung der Mittelungszeit von 1h auf 3h	27.03.01
Weißenfels/Verkehr	Ruß (RP 5400) Erhöhung der Mittelungszeit von 1h auf 3h	28.03.01

Mit diesen Änderungen ergibt sich ein Ausbaustand des LÜSA, der in der Tabelle 2.1 im Anhang dargestellt ist.

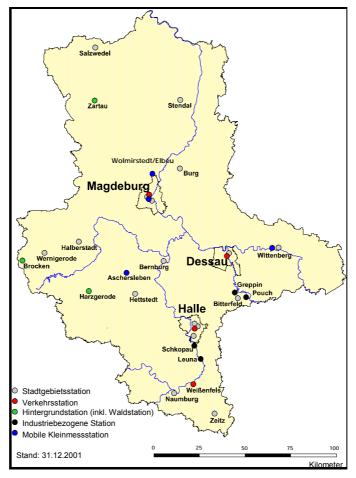


Abbildung 2.1: Messstationen des Luftüberwachungs- und Informationssystems Sachsen-Anhalt (LÜSA)

Depositionsmessnetz

In zunehmendem Maße wird den Beeinträchtigungen der Ökosysteme durch Depositionen aus der Atmosphäre Beachtung geschenkt, da diese die an der Vegetation, im Boden und in den Gewässern ablaufenden komplexen physikalisch-chemischen und biologischen Prozesse beeinflussen. Langzeitige Depositionen, die besonders mit der Industrialisierung einsetzten, haben die begrenzte Pufferkapazität empfindlicher Systeme bereits vielerorts überschritten. Eine dieser Auswirkungen ist in den verbreiteten Waldschäden zu erkennen.

Während in der Vergangenheit zunächst nur der Staubniederschlag als Teil der Deposition gemessen wurde, der in den Zeiten vor der politischen Wende in der DDR ein beträchtliches Ausmaß erreicht hatte, werden diese Stäube seit 1992 auf relevante Schwermetalle untersucht. Derzeit werden acht Schwermetalle und Arsen aus den Quartalsproben der insgesamt 80 Messstellen des Staubniederschlags in Sachsen-Anhalt bestimmt. Die Verteilung der Messstellen für Staubniederschlag zeigt Abbildung 2.24 in Kapitel 2.4.

Des Weiteren werden

- 6 Messstellen für An- und Kationen als Gesamtdeposition mit Bergerhoff-Sammlern sowie für Staubniederschlag und Elemente an den Bodendauerbeobachtungsflächen (BDF),

- 11 Messstellen für An- und Kationen als Gesamtdeposition mit Bergerhoff-Sammlern auf LÜSA-Messstationen.

8 Messstellen für An- und Kationen als Gesamtdeposition mit Eigenbrodt-Sammlern,

- 3 Messstellen für An- und Kationen als Nassdeposition mit IfE-Sammlern und

 8 Messstellen für Dioxine/Furane und Polychlorierte Biphenyle als Gesamtdeposition mit Bergerhoff-Sammlern

betrieben, deren Standorte aus Abbildung 2.29 im Kapitel 2.4 ersichtlich sind. Schließlich werden aus gegebenem Anlass 12 Messstellen für Quecksilber als Gesamtdeposition mit Bergerhoff-Sammlern unterhalten (Abbildungen 2.26 und 2.27 im Kapitel 2.4).

Das Depositionsmessnetz wurde nach verschiedenen Kriterien aufgebaut und wird mit folgenden Zielstellungen betrieben:

- Gewinnung einer Übersicht über atmosphärische Stoffeinträge in Sachsen-Anhalt,
- Fortsetzung langfristiger Messreihen zur Trend-Beobachtung,
- Überwachung besonders von Ökosystemen hinsichtlich der Stoffeinträge aus der Luft in den Boden, z.B. durch die Messung von An- und Kationen,
- Ermittlung der Immissionswirksamkeit von Emittenten auf die Umwelt, z.B. bei Messungen von Dioxinen/Furanen und von Quecksilber,
- Schutz von Anwohnern bei zeitweiligen potentiellen Schadstoffbelastungen, z.B. bei Messungen von Quecksilber.

2.2 Immissionsmeteorologische Einschätzung

Für die Einschätzung der meteorologischen Situation im Jahr 2001, insbesondere für den Vergleich mit klimatologischen (langjährigen) Mittelwerten, werden die Daten des Deutschen Wetterdienstes (DWD), vornehmlich der Wetterstationen Leipzig/Schkeuditz und Magdeburg, verwendet (Quelle: Deutscher Wetterdienst, Witterungsreport). Das Jahr 2001 war an der Wetterstation in Magdeburg 0,7 und in Leipzig/Schkeuditz 0,7 K zu warm, die Jahresniederschlagssumme erreichte jeweils 116 bzw. 113 Prozent des langjährigen Mittels und die Sonnenscheindauer betrug in Magdeburg 97 Prozent und in Leipzig 104 Prozent des Mittelwertes von 1961 bis 1990. Im Vergleich zum Vorjahr war das Jahr 2001 kühler, niederschlagsreicher und sonnenscheinärmer (vgl. Tabelle 2.2).

Tabelle 2.2: Klimatologische Daten für Magdeburg und Leipzig Schkeuditz

Wetterstation	Jahr	Lufttemperatur in °C	Niederschlagssumme in mm	Sonnenscheindauer in h
	1961-1990*	8,7	494	1606
Magdeburg	2000	10,5	476	1736
	2001	9,4	571	1562
	1961-1990*	8,8	540	1516
Leipzig-Schkeuditz	2000	10,6	519	1771
	2001	9,5	610	1576

^{* ...} Normalwert, d.h. arithmetisches Mittel von 1961 bis 1990

Beispielhaft sind in Abbildung 2.2 die Abweichung der Lufttemperatur und in Abbildung 2.3 die Abweichung des Niederschlags 2001 vom langjährigen Mittel an der Wetterstation in Magdeburg graphisch dargestellt.

Dort ist zu erkennen, dass nach einem zu warmen Januar und Februar auch der Mai, Juli und August überdurchschnittliche Temperaturen aufwiesen. Die größte positive Abweichung vom langjährigen Mittel weist der Oktober mit 3,1 K auf. Die wärmsten Monate waren der Juli und August, deren Monatsmitteltemperatur 19,3 °C betrug. Der kälteste Monat war der Dezember, der mit 0,1 °C Monatsmittel der Lufttemperatur 1,1 K unter dem langjährigen Mittel lag.

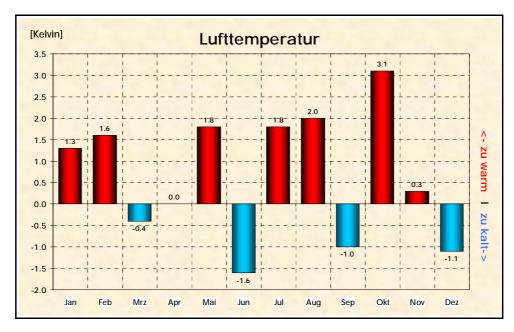


Abbildung 2.2: Abweichung der Lufttemperatur 2001 vom langjährigen Mittel Wetterstation Magdeburg

Beim Niederschlag fällt auf, dass die Monate März, Juli, September und Dezember mit +26 mm bis zu +46 mm Abweichung vom Normalwert viel zu nass waren.

Im Mai betrug die Niederschlagsmenge 23 mm und lag damit um 24 mm unter dem langjährigen Mittel. Auch die Monate April, Juni und August waren zu trocken.

Sonnenscheinreiche Monate waren Januar, Mai und Juli, wo die Sonnenscheindauer jeweils 43 %, 39 % und 17 % über dem Normalwert lag. Sonnenscheinarme Monate waren März, April, Juni, September und Dezember mit einer Sonnenscheindauer von 26 %, 11 %, 18 %, 49 % und 34 % unter dem langjährigen Mittel.

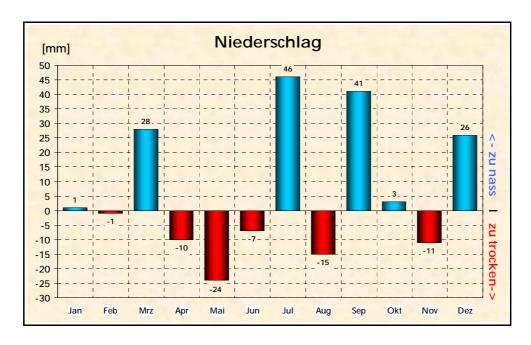


Abbildung 2.3: Abweichung des Niederschlages 2001 vom langjährigen Mittel Wetterstation Magdeburg

Der Deutsche Wetterdienst klassifiziert die Wetterlagen nach einer objektiven Methode, so dass ein Vergleich der Witterung in einzelnen Zeitabschnitten möglich ist. Zur allgemeinen Beschreibung der Witterung im Jahresverlauf 2001 wird auf diese Wetterlagenstatistiken zurückgegriffen (Quelle: Witterungsreport, Jahresausgabe, Jahr 2001).

Im Winter (01.12.2000 bis 28.02.2001) traten am häufigsten Südwestlagen auf (32 %), von denen 14 % auf den Januar, 18 % auf den Dezember und 8 % auf den Februar entfielen. Zweithäufigste Wetterlage im Winter war Hoch Mitteleuropa (23 %), gefolgt von Westlagen 22 %. Kaum einen Einfluss hatten Nordwestlagen (8 %), Nord- und Ostlagen (je 6 %) und Südlagen (3 %). Die Wetterlage Hoch Mitteleuropa verteilte sich zu je 7 % auf den Dezember und Januar sowie 10 % auf den Februar. Die Westlagen häuften sich mit 18 % im Dezember, im Januar wurden sie zu 4 % registriert. 54 % der Wetterlagen waren zyklonal geprägt, 46 % antizyklonal. Im Winter 1999/2000 waren 64 % der Wetterlagen zyklonal und 36 % antizyklonal. Den größten Anteil zu dieser Zeit hatten die Westlagen mit 66 %.

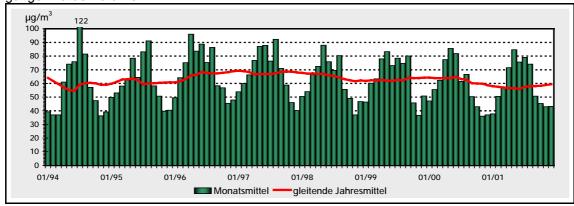
Die Witterung im Winter 2000/2001 war zu warm und meist zu trocken.

Im Frühjahr 2001 (01.03. – 31.05.) fehlten die Hochdrucklagen über Mitteleuropa gänzlich. Im langjährigen Mittel sind diese zu 12 % vertreten. Auch die Nordwestlagen, im vieljährigen Mittel zu 7 % vertreten, fehlten in diesem Frühjahr. Dagegen weisen die Westlagen (35 %) und die Nordlagen (33 %) eine gegenüber dem langjährigen Mittel um 15 % erhöhte Häufigkeit auf. Die Südlagen erreichten 17 %, Ostlagen 9 % und Südwestlagen 5 %. Die Übergangslagen hatten einen Anteil von 1 %. 71 % der Wetterlagen im Frühling waren zyklonal geprägt, 28 antizyklonal. Im Vergleich zum Vorjahr ist der Einschnitt durch das Fehlen der Wetterlage Hoch Mitteleuropa zu nennen (in 2000 10 %). Im Frühjahr 2001 war die Wetterlage Südlage (22 %) die häufigste, gefolgt von den Nordwestlagen (21 %).

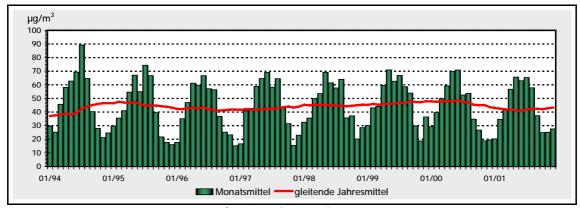
Auch der Sommer 2001 (01.06. - 31.08.) war durch Westwetterlagen (31 %) geprägt, was 5 % über dem langjährigen Mittelwert liegt. Hier allerdings war die zweithäufigste Wetterlage Hoch Mitteleuropa (29 %). Die Westlagen verteilten sich zu 14 % auf den Juni, zu 10 % auf den August und zu 7 % auf den Juli. Die Hochdrucklagen traten vor allem im Juli auf. Die Häufigkeit erreichte 15 % (Juni 7 %, August 8 %). Diese große Häufigkeit führte zu einer starken Überrepräsentation im Vergleich zum langjährigen Mittel. Auch Südlagen (15 %) ragten in der Häufigkeit über das langjährige Mittel von 9 % hinaus. Diese verteilten sich auf den Juli und August. Nur im Juni traten Nordwestlagen auf. Seltener als beim langjährigen Mittel waren Ostlagen (11 % gegenüber 16 %) und Nordlagen (3 % zu 16 %) vertreten. Südwestlagen gab es im Sommer 2001 nicht. Die zyklonalen und antizyklonalen Wetterlagen traten zu je 50 % auf.

Damit unterscheidet sich der Sommer 2001 deutlich vom Sommer 2000 als der Typ Hoch Mitteleuropa die häufigste Wetterlage war, gefolgt von den Nordlagen, die 33 % erreichten.

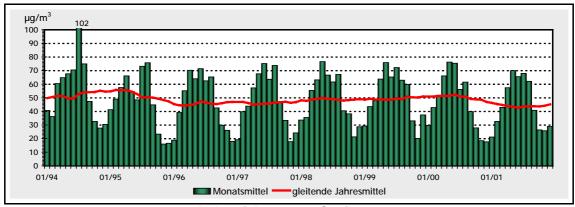
Im Herbst (01.09. – 30.11.) dominierten die Nordwestlagen 36 % (langjähriges Mittel: 6 %). Die Westlagen traten mit einer Häufigkeit von 23 % auf (langjähriges Mittel: 30 %). Im September fehlten die Westlagen, im Oktober traten sie in 16 % auf. Die Nordwestlagen bestimmten den November (23 %) und den September (13 %). Den langjährigen Mittelwerten entsprachen die Häufigkeiten der Südwestlagen und der Südlagen (9 % bzw. 12 %). Diese beiden Wetterlagen traten im November gar nicht, im Oktober zu 10 bzw. 8 % auf. Bestimmend für den Herbst waren die seltenen Hochdrucklagen über Mitteleuropa. Der langjährige Mittelwert beträgt für diese Wetterlage 20 %, jedoch trat diese nur in 7 % auf. Ähnlich ist das Verhältnis bei den Nordlagen (4 % zu 12 %). Nordlagen kamen nur im September vor. Häufiger als im vieljährigen Mittel trat die Wetterlage Tiefdruckgebiet Mitteleuropa auf (7 % zu 3 %), Ostlagen waren weniger häufig (3 %, im Mittel 9 %).

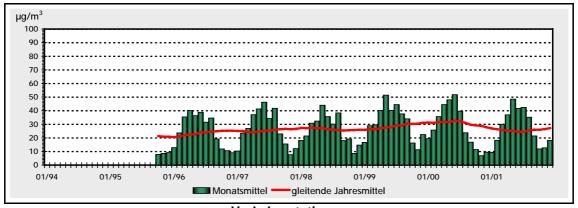

Den Herbst prägten die zyklonalen Wetterlagen zu 62 %, wobei der September 48 % betrug. Der Herbst 2001 mit seiner Prägung durch Nordwest- und Westlagen unterschied sich deutlich vom Herbst 2000, als Südlagen mit 40 % dominierten.

2.3 Ergebnisse aus dem Luftüberwachungs- und Informationssystem Sachsen-Anhalt


2.3.1 Ozon

Ozon ist eine Schadstoffkomponente, bei der es nach wie vor zu zahlreichen Überschreitungen der gültigen Bewertungsmaßstäbe kommt. Für eine flächendeckende Überwachung der Ozonkonzentration, zur Untersuchung der regionalen Besonderheiten sowie zur Auswertung des Ozonbildungspotenzials gemäß EU-Richtlinie 92/72/EWG standen im Jahr 2001 in Sachsen-Anhalt 23 Messreihen zur Verfügung. Die mittlere Verfügbarkeit der Ozon-Halbstundenmittelwerte betrug 97 %. Die Verfügbarkeiten an den einzelnen Stationen werden in Tabelle 2.2 im Anhang angegeben. Tabelle 2.3 im Anhang zeigt den Vergleich der Jahreskenngrößen des Ozons 2000 und 2001. Jahreskenngrößen sind für die Beurteilung der Ozon-Konzentrationen weniger geeignet, dennoch geben sie einen Überblick über die Änderungen vom Jahr 2000 zum Jahr 2001. Bei Jahresmittelwerten wurden kaum Änderungen festgestellt. Bei den 98-Perzentilen fällt auf, dass die Ozon-Konzentrationen auf dem Brocken um ca. 7 % gestiegen sind, wohingegen die Ozon-Konzentrationen an den Stadtgebiets-, Industrie- und den übrigen Hintergrundstationen um bis zu 8 % absanken.


Die Abbildung 2.4 stellt die Monatsmittelwerte und die gleitenden Jahresmittelwerte gemittelt über die einzelnen Stationstypen (Stadtgebiets-, Hintergrund- und Verkehrsmessstationen sowie industriebezogene Messstationen) im LÜSA vom Januar 1994 bis zum Dezember 2001 dar. Die Monatsmittelwerte verdeutlichen die Temperatur- und Strahlungsabhängigkeit der Ozonkonzentrationen durch einen ausgeprägten Jahresgang mit hohen Werten im Sommer und niedrigeren Werten in den kühleren Jahreszeiten. Die gleitenden Jahresmittelwerte visualisieren den Trend der mittleren Belastung. Von 1996 bis 2000 zeigen die Stationstypen Stadtgebiet, Industrie und Verkehr einen leicht ansteigenden Trend, wobei die höheren Werte der Jahre 1994 und 1995 nicht wieder erreicht wurden. An den Hintergrundstationen ist dieser Trend nicht erkennbar. Hier ist in der mittleren Belastung eher ein leichtes Maximum in den Jahren 1996 und 1997 zu erkennen. Von 2000 bis 2001 ist vor allem in den gleitenden Mittelwerten der Sommermonate an allen Stationstypen ein rückläufiger Trend ersichtlich, weil die Ozon-Konzentrationen in den Sommermonaten 2001 geringer ausfielen als in den Vorjahren. Diese geringeren Konzentrationen sind auf für die Ozonbildung ungünstigeren meteorologischen Bedingungen zurückzuführen.


Hintergrundstationen

Stadtgebietsstationen

Industriebezogene Stationen

Verkehrsstationen

Abbildung 2.4: Entwicklung der Ozon-Immissionen

Überschreitungen des Schwellenwertes zur Information der Bevölkerung von 180 μg/m³ als Einstundenmittelwert (Tabelle 2.4 im Anhang) traten 2000 an 2 Tagen und 12 LÜSA-Messstationen und im Jahr 2001 an 5 Tagen und insgesamt 5 LÜSA-Messstationen auf.

Die Überschreitungen des Schwellenwertes zum Gesundheitsschutz (110 μg/m³ als Achtstundenmittelwert zu den Zeitpunkten 0 Uhr, 8 Uhr, 16 Uhr und 20 Uhr laut EU-Richtlinie 72/92/EWG) sind in Tabelle 2.5 im Anhang dargestellt. Die Anzahl der Tage mit Überschreitungen dieses Schwellenwertes im LÜSA (mindestens eine Station mit Überschreitung) stieg von 54 auf 63 Tage leicht an (Tabelle 2.3). Dabei ist das Verhalten an den einzelnen Stationen sehr unterschiedlich (Abbildung 2.5). Die Unterschiede an den Stationen sind meteorologisch bedingt. So fehlten im Sommer 2001 die Südwestwetterlagen gänzlich (vgl. Abschnitt 2.2). Dies ist die Ursache für die Reduktion der Tage mit Überschreitungen des Schwellenwertes für den Gesundheitsschutz an der Messstation Burg. In den Ozon-Konzentrationen an der Station Burg spiegelt sich die Lee-Lage zum Ballungsraum Magdeburg bei Südwestwetterlagen wider.

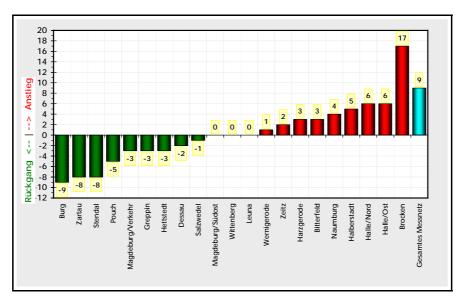


Abbildung 2.5: Abweichung der Anzahl der Tage mit Überschreitungen des Schwellenwertes zum Gesundheitsschutz 2001 zu 2000

Tabelle 2.3: Anzahl der Tage mit Überschreitungen des Schwellenwertes zum Gesundheitsschutz (110 μg/m³) 1999 bis 2001

Messstelle	Anzahl der Tage mit 8h-Mittelwerten ¹⁾ > 110 μg/m³				
	1999	2000	2001		
Brocken	73	43	60		
Harzgerode	49	31	34		
Salzwedel	38	19	18		
Sangerhausen	35	-	-		
Zartau	39	28	20		
Stendal	23	21	13		
Genthin	33	-	-		
Burg	45	34	25		
Magdeburg/Südost	32	20	20		
Magdeburg/Zentrum	33	24	-		
Magdeburg/West	=	-	(20)		
Magdeburg/Verkehr	1	3	0		
Schönebeck	27	21	-		
Halberstadt	30	19	24		
Wernigerode	34	17	18		
Dessau	40	25	23		
Wittenberg	36	31	31		
Dessau/Verkehr	2	13	-		
Dessau/Albrechtsplatz	-	-	(0)		
Bitterfeld	-	23	26		
Greppin	42	28	25		
Pouch	55	31	26		
Hettstedt	35	22	19		
Halle/Nord	22	20	26		
Halle/Ost	39	22	28		
Halle/Zentrum	30	16	-		
Bad Dürrenberg	38	22	-		
Leuna	32	27	27		
Merseburg	38	-	-		
Naumburg	28	22	26		
Zeitz	36	23	25		
Gesamtes Messnetz	90	54	63		

^{1) ...} zu definierten Zeitpunkten gemäß 92/72/EWG

^{- ...} keine Messwerte

^{() ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Die Tabelle 2.6 im Anhang enthält die Anzahl der Überschreitungen des Schwellenwertes zum Schutz der Vegetation gemäß der EU-Richtlinie 92/72/EWG (65 μ g/m³ als 24-Stunden-Mittelwert, 1hgleitend). Der Vergleich der Summen der Überschreitungszahlen über alle gleichen Stationskollektive ohne eingeschränkte Verfügbarkeit ergibt von 2000 zu 2001 einen geringfügigen Anstieg um 6 % (1224 Überschreitungen) von 19516 auf 20740, wobei das Verhalten der einzelnen Stationen auch hier sehr unterschiedlich ist.

Außerdem sind in den Tabellen 2.7 und 2.8 im Anhang die Auswertungen gemäß der 3. EU-Tochterrichtlinie über den Ozongehalt der Luft (Anzahl der Tage mit Überschreitungen von 120 μg/m³ durch Achtstundenmittelwerte und AOT40-Werte; Erläuterungen s. Kapitel 2.8) enthalten. Auffallend ist, dass an allen Messstationen des LÜSA Tage mit Überschreitungen des Zielwertes zum Gesundheitsschutz auftreten. Ausnahmen bilden die Verkehrsmessstationen Dessau/Albrechtsplatz und Magdeburg/Verkehr, an denen auch Ozon gemessen wurde.

Bei den AOT40-Werten fällt die starke Abhängigkeit von den meteorologischen Bedingungen auf, die sich in den uneinheitlichen Trends der Werte in den einzelnen Jahren und an den einzelnen Stationen widerspiegeln. So unterscheidet sich das Jahr mit den maximalen AOT40-Werten von Station zu Station

Auf diese Auswertungen wird auch im Kapitel 2.6 "Beurteilung der Immissionen nach den EU-Tochterrichtlinien" eingegangen.

Tabelle 2.4:	Uberschreitungen des Informationswertes (180 μg/m³ als 1h-Mittelwert) 2001
--------------	--

Datum	Uhrzeit	Brocken	Harzgerode	Hettstedt	Leuna	Wittenberg
27.06.	13:00	181				
	15:00	186				
	16:00		186			
	17:00		185		181	
	18:00			185	184	
30.07.	18:00	182				
	19:00	197				
	20:00	207				
	21:00	209				
	22:00	196				
	23:00	181				
16.08.	04:00	186				
	15:00			·		189
25.08.	10:00	185		·		
26.08.	15:00			·	188	
	18:00			·	181	

Tabelle 2.4 beinhaltet alle Überschreitungen des Informationswertes für Ozon im LÜSA für das Jahr 2001. Im folgenden werden die einzelnen Situationen ausgewertet.

Erhöhte Ozonkonzentrationen im südlichen Sachsen-Anhalt am 27. Juni 2001

Die Witterung am 27. Juni 2001 wurde durch eine Hochdruckbrücke über Mitteleuropa beherrscht, die bis zum Mittelmeer reichte und sich langsam ostwärts bewegte. Über Westfrankreich bildete sich am Tag zuvor bereits eine Kaltfront, die sich während der Ostverlagerung verstärkte und ausgeprägte Wettererscheinungen aufwies. Sie überquerte in der Nacht vom 27. zum 28. Juni 2001 das Gebiet Sachsen-Anhalts.

Nachdem am 26. Juni an nahezu allen Messstationen des Luftüberwachungs- und Informationssystems Sachsen-Anhalt im Tagesverlauf östliche Winde registriert wurden, drehte der Wind in der Nacht zum 27. Juni auf südwestliche Richtungen. Während an den Bodenstationen die Windrichtung in den Vormittagsstunden auf Ost bis Südost zurück drehte, verblieb die Windrichtung auf dem Brocken relativ konstant bei südlichen bis südwestlichen Richtungen. Die Messungen auf dem Brocken sind für die großräumigen Transporte repräsentativ. Erst in der Nacht zum 28. Juni, als die Kaltfront durchzog, drehte die Windrichtung auf West. Die Windgeschwindigkeiten waren am Boden mit 2 bis 4 m/s sehr gering.

Erhöhte Ozon-Konzentrationen wurden vor allem im südlichen Sachsen-Anhalt gemessen. Dort überschritten die Einstundenmittelwerte auch den Informationswert von 180 $\mu g/m^3$. Betroffen von diesen Überschreitungen waren am 27. Juni 2001 fünf Messstationen des LÜSA: Harzgerode (188 $\mu g/m^3$), Brocken (186 $\mu g/m^3$), Hettstedt (185 $\mu g/m^3$), Leuna (184 $\mu g/m^3$) und Naumburg (183 $\mu g/m^3$).

In den nördlichen Landesteilen erreichten die Konzentrationen ca. 165 μg/m³ (z.B. in Zartau).

Abbildung 2.6 zeigt die zeitlichen Verläufe der Ozon-Konzentrationen an den betroffenen fünf Stationen. Am 26. Juni, als östliche Windrichtungen und Luftmassen mit geringer Belastung an Vorläufer-

substanzen vorherrschten, war das Niveau der Ozon-Konzentrationen bei Werten bis zu 120 μg/m³ relativ niedrig. Erst als die Windrichtung auf südwestliche Richtungen drehte (in der Nacht zum 27. Juni), ist ein Anstieg der Ozon-Konzentrationen in der sogenannten Reservoirschicht, in der sich die Brockenmessstation befindet, zu erkennen. Im Tagesverlauf stiegen die Konzentrationen an den Stadtgebietsstationen dann ebenfalls auf das Niveau der Reservoirschicht. Hierbei spielen sowohl Durchmischungsprozesse in der unteren Troposphäre, die das Ozon aus den höheren Schichten zum Boden transportieren, als auch lokale Ozonbildungsprozesse eine Rolle. Damit spielten Ferntransporte von Vorläufersubstanzen eine wesentliche Rolle für die registrierten Überschreitungen der Informationswerte.

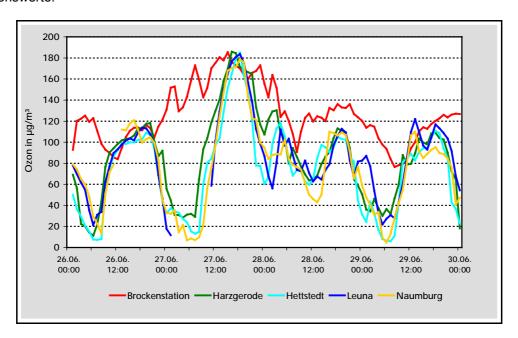


Abbildung 2.6: Einstundenmittelwerte Ozon am 27. Juni 2001

Erhöhte Ozonkonzentrationen am 16. August 2001

Am 14. August bestimmte Hochdruckeinfluss mit Luftmassen subtropischen Ursprungs das Wetter. Nach Wolkenauflösung kam es zu einem raschen Temperaturanstieg mit Werten größer 25 °C. Der Wind wehte schwach, im Tagesverlauf aus südwestlichen, nachts aus östlichen Richtungen. In Sachsen-Anhalt wurden die höchsten Einstundenmittelwerte in Pouch (148 μ g/m³ um 18:00 Uhr), Bitterfeld (147 μ g/m³ um 20:00 Uhr), Leuna (147 μ g/m³ um 18:00 Uhr) und Halle/Ost (145 μ g/m³ um 19:00 Uhr) gemessen. In der Nacht vom 14. zum 15.08. kam es zu einem Ozon-Anstieg auf dem Brocken auf 168 μ g/m³ um 04:00 Uhr.

Am 15.08.02 wurde der Zustrom der warmen, trockeneren Luftmassen subtropischen Ursprungs weiter verstärkt. Ein wolkenloser Himmel mit ungehinderter Sonneneinstrahlung führte zu sehr hohen Temperaturen oberhalb der 30 °C. Der Wind wehte schwach mit Richtungen um Südost, im Harzgebiet um Südwest. Obwohl bundesweit an 75 Stationen Überschreitungen des Informationswertes registriert wurden, traten in Sachsen-Anhalt keine Überschreitungen auf (Maxima: Brocken 179 μ g/m³ um 20:00 Uhr, Salzwedel 172 μ g/m³ um 17:00 Uhr, Harzgerode 169 μ g/m³ um 17:00 Uhr, Burg 168 μ g/m³ um 18:00 Uhr).

Am Nachmittag und in den Abend- und Nachtstunden des 16. August kam es zum Durchzug einer Kaltfront, die die sehr heiße Luftmasse verdrängte und kühlere Luft zuführte. Dennoch waren die Lufttemperaturen im Tagesverlauf sehr hoch. Erst mit Durchzug der Front und Drehung des Windes auf Nordwest entstanden Schauer und Gewitter.

An zwei Stationen traten Überschreitungen des Informationswertes auf (Wittenberg 189 μ g/m³ um 15:00 Uhr, Brocken 186 μ g/m³ um 04:00 Uhr), die weiteren Maxima erreichten den Informationswert nicht (Pouch 174 μ g/m³ um 15:00 Uhr, Burg und Dessau 172 μ g/m³ um 15:00 Uhr).

Mit dem Durchzug der Front ging ein deutliches Absinken der Ozon-Konzentrationen einher (z.B. sanken die Konzentrationen an der Brockenstation von 150 µg/m³ auf ca. 70 µg/m³).

Erhöhte Ozonkonzentrationen vom 24. bis 26. August 2001

Am Freitag, dem 24. August setzte sich hochsommerliche Witterung am Rande eines Hochdruckgebietes über der Ostsee und Osteuropa durch. Mit der Drehung des Windes auf südwestliche und

westliche Richtungen stiegen die Ozon-Konzentrationen am Freitag bereits auf Werte knapp unter dem Informationswert für Ozon (180 μ g/m³ als Einstundenmittelwert) an. An der Messstation Pouch wurden am 24. August 179 μ g/m³ als maximaler Einstundenmittelwert gemessen.

Am Sonnabend stiegen die Werte weiter an und erreichten auf dem Brocken 185 μ g/m³; in Halberstadt und Pouch wurden 175 μ g/m³ als Maximum registriert, in Leuna und Naumburg 172 μ g/m³.

Am Sonntag überschritt der Einstundenmittelwert um 15:00 Uhr in Leuna den Informationswert mit 188 μ g/m³. Auf dem Brocken wurde als maximaler Einstundenmittelwert des Tages 176 μ g/m³ gemessen, in Greppin 174 μ g/m³.

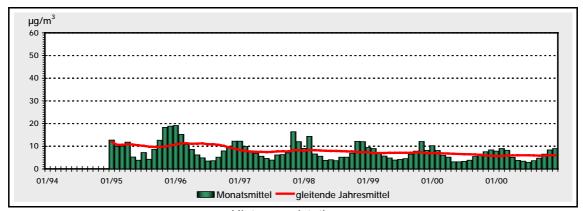
Damit konzentrierten sich die Überschreitungen des Informationswertes für Ozon auf den Südteil Sachsen-Anhalts. Dagegen wurden landesweit an allen Messstationen Überschreitungen des Zielwertes für den Schutz der menschlichen Gesundheit registriert. Dieser Zielwert beträgt 120 µg/m³ als maximaler, gleitender Achtstundenmittelwert an einem Tag und soll an nicht mehr als 25 Tagen pro Jahr überschritten werden. Als langfristiges Ziel der EU ist geplant, dass keine Überschreitungen der 120 µg/m³ durch Achtstundenmittelwerte mehr auftreten.

Schon am Freitag, als die Ozon-Konzentrationen noch im Anstieg begriffen waren, wurden an 18 der 23 Ozon-Messstationen im Luftüberwachungs- und Informationssystem Sachsen-Anhalt maximale Achtstundenmittelwerte, die größer als 120 μ g/m³ waren, registriert. Am 25. und 26. August stieg die Zahl der Stationen mit Überschreitungen dieses Wertes auf 22 von 23 Stationen an. Bei der Station Magdeburg/Verkehr, wo keine Überschreitung vorliegt, handelt es sich um eine Verkehrsmessstation, die wegen der Nähe zu frischen Stickstoffmonoxid-Emissionsquellen (Straßenverkehr) generell sehr geringe Ozon-Konzentrationen misst.

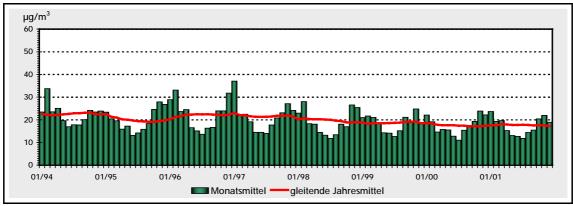
2.3.2 Stickstoffmonoxid (NO) und Stickstoffdioxid (NO₂)

Stickstoffoxide werden an allen Messstationen des LÜSA gemessen. Somit standen für das Jahr 2001 insgesamt 32 Messreihen für Stickstoffdioxid und Stickstoffmonoxid zur Verfügung (Tabelle 2.1 im Anhang). Die Einschätzung der Datenverfügbarkeiten der einzelnen Messreihen ermöglicht Tabelle 2.2 im Anhang. Im Mittel über alle Stationen wurde eine Verfügbarkeit von 96 % erreicht.

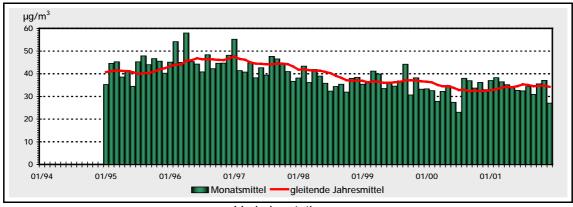
Zur Bewertung der Stickstoffdioxid-Konzentrationen sind der Grenzwert der 22. BlmSchV vom 26.10.1993, geändert am 27.05.1994 (200 µg/m³ als 98-Perzentil der Halbstundenmittelwerte) wie auch der Konzentrationswert der 23. BlmSchV (160 µg/m³ als 98-Perzentil der Halbstundenmittelwerte) herangezogen worden. Diese gültigen Grenzwerte wurden an allen LÜSA-Messstationen eingehalten (s. Tabellen 2.9 im Anhang). Darüber hinaus existieren die Konzentrations-, Grenz- und Alarmwerte der 1. EU-Tochterrichtlinie. Sowohl der Konzentrationswert (200 µg/m³ vgl. Kapitel 2.8), der ab dem 01.01.2010 einzuhalten ist, als auch der Alarmwert (400 µg/m³ vgl. Kapitel 2.8) für den Einstundenmittelwert, der ab 19.07.2001 gültig ist, wurden im Jahr 2001 nicht überschritten (s. Tabelle 2.11 im Anhang). Der ab dem 1.1.2010 einzuhaltende Grenzwert des Jahresmittelwertes (40 µg/m³ vgl. Kapitel 2.8) würde an der Messstation Magdeburg/Verkehr überschritten werden. Dort ist der Jahresmittelwert von 34 µg/m³ auf 41 µg/m³ angestiegen. Bis zum 31.12.2009 sind Toleranzmargen für den Grenzwert, der ab dem 01.01.2010 einzuhalten ist, festgeschrieben. Für das Jahr 2001 betrug die Summe aus Grenzwert und Toleranzmarge für Stickstoffdioxid 58 µg/m³ und wurde an allen LÜSA-Messstationen eingehalten.


An den anderen Verkehrsmessstationen, die gegenüber den Stadtgebietsstationen die höheren Werte aufweisen, würde der künftig geltende Grenzwert zu 76 bis 89 Prozent erreicht werden. An der Stadtgebietsstation Bernburg ist der Jahresmittelwert von 32 $\mu g/m^3$ auf 22 $\mu g/m^3$ zurückgegangen. Dieser für eine Stadtgebietsstation hohe Wert in 2000 war begründet in der Verkehrsbelastung einer Bundesstraße in unmittelbarer Nähe der Station. Im Jahr 2001 hat sich infolge der Eröffnung der A14 zwischen Magdeburg und Halle das Verkehrsaufkommen auf dieser Bundesstraße erheblich verringert und führte zu einem Rückgang der Stickstoffdioxidkonzentrationen um 31 %.

Im Vergleich hatten Jahresmittelwerte und Perzentile in 2001 nur einen geringfügigen Schwankungsbereich um den Vorjahreswert. Dabei verhielten sich die Stationen im Einzelnen sehr unterschiedlich. Im Durchschnitt über alle Stationen, an denen in beiden Jahren Kenngrößen vorlagen, ist kein Trend ersichtlich.


Die Tabelle 2.10 im Anhang enthält die Auswertungen der Stickstoffdioxid-Messreihen gemäß der noch gültigen EU-Richtlinie 85/203/EWG.

Eine genauere Beurteilung der Stickstoffdioxid-Belastung in Sachsen-Anhalt anhand der Auswertungen gemäß der neuen 1. EU-Tochterrichtlinie erfolgt im Kapitel 2.6 "Beurteilung der Immissionen nach den EU-Tochterrichtlinien" (Tabelle 2.11 im Anhang).


Die Abbildung 2.7 zeigt über Stationstypen gemittelte Monatsmittelwerte und gleitende Jahresmittelwerte seit Mitte der 90er Jahre. An den weit von der Hauptemissionsquelle, dem Straßenverkehr, entfernt gelegenen Hintergrundstationen wurden die geringsten Stickstoffdioxid-Belastungen gemessen. Eine höhere Belastung wird in den Städten und Ballungsgebieten registriert. Die in unmittelbarer Nähe zu den Emissionsquellen im Straßenverkehr gelegenen Verkehrsstationen weisen die höchsten Stickstoffdioxid-Konzentrationen auf. Von 1996 bis 2000 ist ein leichter Rückgang des Belastungsniveaus zu verzeichnen. Neben den meteorologischen Ursachen spielen hier die verringerten industriellen Emissionen (z.B. aus Großfeuerungsanlagen) und der höhere Anteil der Kfz mit Katalysatoren eine Rolle. Im Jahr 2001 verhielten sich die Werte ähnlich wie im Vorjahr.

Hintergrundstationen

Stadtgebiets- und Industriebezogene Stationen

Verkehrsstationen

Abbildung 2.7: Entwicklung der Stickstoffdioxid-Immissionen

Die Tabelle 2.12 im Anhang enthält für ausgewählte Stationen (repräsentativ für Schutz von Ökosystemen) die Jahresmittelwerte der Stickstoffoxide, angegeben als Stickstoffdioxid. Der Grenzwert zum Schutz der Vegetation beträgt 30 μg/m³ als Jahresmittelwert und wird an den ausgewählten LÜSA-Messstationen, die für Ökosysteme repräsentativ sind, eingehalten.

Für Stickstoffmonoxid existieren keine gesetzlichen Grenzwerte. Bei den Stickstoffmonoxid-Konzentrationen ist ein Rückgang der Jahresmittelwerte um 19 % und der 98-Perzentile um 17 % zu verzeichnen.

2.3.3 Benzol, Toluol und Xylole

Die aromatischen Kohlenwasserstoffe Benzol, Toluol und Xylole (BTX) wurden 2001 im LÜSA an zehn Messstationen erfasst (Tabelle 2.1 im Anhang). Aufschluss über die Verfügbarkeiten der einzelnen Messreihen gibt Tabelle 2.2 im Anhang. Die Tabelle 2.5 enthält die Jahresmittelwerte für Benzol, Toluol und Summenxylole.

Im Jahr 2000 wurde begonnen, die BTX-Messplätze so einzustellen, dass auch die Einzel-Xylole (meta-, para- und ortho-Xylol) sowie Ethylbenzol ermittelt werden können. Während die Datenbasis für das Jahr 2000 jedoch noch nicht ausreichte, um Jahresmittelwerte anzugeben, liegen 2001 erstmals Jahreskenngrößen vor (s. Tabelle 2.6).

Tabelle 2.5: Jahreskenngrößen Benzol, Toluol und Xylole 2000 und 2001 in µg/m³

Messstation	Jahresmittelwerte (I1)					98-Perzentile (I2)						
	Benzol		Toluol		Xylole ¹⁾		Benzol		Toluol		Xylole ¹⁾	
	2000	2001	2000	2001	2000	2001	2000	2001	2000	2001	2000	2001
Magdeburg/West	1,1	(1,1)	2,3	(2,1)	1,8	(2,0)	4,1	(3,9)	8,6	(8,5)	11,2	(10,7)
Bernburg	1,5	1,3	3,1	2,7	3,0	3,3	5,3	4,6	12,1	10,3	12,7	14,2
Halle/Nord	1,1	1,2	1,9	1,9	(2,4)	1,8	4,2	4,3	6,9	7,2	(11,6)	11,3
Leuna	1,0	(1,0)	1,7	(1,7)	(1,5)	(1,5)	3,3	(3,8)	6,2	(6,6)	(7,7)	(7,4)
Magdeburg/Verkehr	3,0	(2,9)	7,6	(6,3)	8,5	(7,6)	8,8	(8,3)	22,1	(19,2)	27,3	(24,4)
Dessau/Albrechtspl.		(1,7)		(4,5)		(5,0)		(5,1)		(13,9)		(16,5)
Wittenberg/Verkehr	3,3	3,3	7,0	(6,6)	6,7	(6,8)	12,3	11,3	26,0	(23,9)	28,4	(27,4)
Halle/Verkehr	2,5	2,3	4,8	4,1	6,2	5,7	7,9	7,2	16,0	13,0	24,3	20,7
Weißenfels/Verkehr	(3,0)	2,4	(6,1)	5,0	(8,0)	7,4	(10,4)	7,3	(21,7)	16,7	(32,3)	27,3
Aschersleben		(2,1)		(4,0)		(5,1)		(5,8)		(11,8)		(14,5)

^{() ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.6: Jahreskenngrößen Ethylbenzol, Meta-, Ortho- und Paraxylol 2001 in μg/m³

Messstation	,	Jahresmittelwerte (I1)				98-Perzentile (I2)			
	Ethyl-	Meta-	Ortho-	Para-	Ethyl-	Meta-	Ortho-	Para-	
	benzol	Xylol			benzol	Xylol			
Aschersleben	(1,5)	(2,4)	(1,5)	(1,2)	(4,1)	(6,9)	(4,5)	(3,3)	
Bernburg	0,8	1,9	0,9	0,5	3,0	8,0	4,1	2,7	
Dessau/Albrechtsplatz	(1,2)	(2,7)	(1,5)	(1,0)	(3,9)	(9,1)	(4,8)	(3,2)	
Halle/Nord	0,4	1,1	0,4	(0,3)	2,8	6,0	3,1	(2,3)	
Halle/Verkehr	1,4	2,9	1,7	1,0	5,1	11,0	6,0	3,8	
Leuna	0,5	(8,0)	(0,4)	(0,4)	2,1	(3,8)	(2,1)	(1,6)	
Magdeburg/Verkehr	(1,8)	(3,8)	2,1	1,6	(5,5)	(12,4)	6,9	5,0	
Magdeburg/West	(0,6)	(1,1)	(0,5)	(0,4)	(2,8)	(5,7)	(3,1)	(2,2)	
Weißenfels/Verkehr	1,7	3,8	2,1	1,4	5,9	14,1	7,9	5,2	

^{...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Benzol ist Bestandteil des Benzins und wird in erster Linie durch den Kraftfahrzeugverkehr freigesetzt. Dabei spielt sowohl die Verdampfung aus den Treibstofftanks und aus den warmen Motoren als auch die Freisetzung mit den Abgasen eine Rolle.

Deshalb wird Benzol in den vier Städten Halle, Magdeburg, Dessau und Weißenfels an Verkehrsmessstationen sowie in Wittenberg und Aschersleben zusätzlich an mobilen Kleinmessstationen, die an Verkehrsknotenpunkten installiert sind, registriert. Die Messstation im Stadtgebiet von Bernburg, die sich im Einflussbereich einer stark befahrenen Straße befindet, wird ebenfalls zur Überwachung des Benzols eingesetzt. Die mobile Kleinmessstation Sangerhausen wurde nach Beendigung des Messprogramms am 12.10.2001 nach Wolmirstedt/Ortsteil Elbeu umgesetzt. Hier konnten auf Grund der eingeschränkten Datenmenge noch keine Jahreskenngrößen berechnet werden.

^{...} Summenxylole (para-, meta-, und ortho-Xylol)

^{...} Summenxylole (para-, meta-, und ortho-Xylol)

Zusätzlich sind die Stadtgebietsmessstationen Halle/Nord und Magdeburg/West, die in dicht besiedelten Wohngebieten installiert sind, mit BTX-Messgeräten ausgerüstet, um den Trend der Benzol-Belastung im städtischen Hintergrundbereich erfassen zu können.

Neben dem Verkehr stellt der Lösungsmitteleinsatz in der Industrie eine Emissionsquelle für Toluol und Xylole dar. Deshalb ist die LÜSA-Messstation Leuna ebenfalls mit einem BTX-Messgerät ausgerüstet und fungiert als emittentenbezogene Station.

Bei den Vorschlägen des LAI für immissionsbegrenzende Werte wurden als Zielwerte für **Toluol** und **Xylole** jeweils 30 μ g/m³ (Jahresmittelwert) festgelegt. Die maximalen Jahresmittelwerte für diese Komponenten wurden an der LÜSA-Messstation Wittenberg/Verkehr mit 6,6 μ g/m³ (Toluol) und an der Station Magdeburg/Verkehr 7,6 μ g/m³ (Xylole) registriert und betragen somit 22 % bzw. 25 % des Zielwertes.

Benzol kann Krebs erzeugen. Darum gilt es, das Risiko weitest möglich zu minimieren.

Der LAI legte in einer Krebsrisikostudie einen flächenbezogenen Bezugswert von 2,5 μg/m³ für den Jahresmittelwert fest, der im Zusammenhang mit sechs weiteren Stoffen (Arsen, Asbest, Benzol, Cadmium, Dieselruß, B(a)P und 2,3,7,8-TCDD) bei einem Gesamtrisiko von 1:2500 (ein durch Luftschadstoffe ausgelöster Krebsfall auf 2500 Einwohner bei einer Expositionszeit von 70 Jahren) gilt. Dieser Bezugswert, der als Vorschlag für einen längerfristigen Zielwert zu verstehen ist, wurde bei den Messungen des LÜSA in Wohngebieten nicht überschritten.

Der höchste im LÜSA gemessene Jahresmittelwert für Benzol beträgt 3,3 µg/m³ an der Messstation Wittenberg/Verkehr und erreicht damit den im Straßenraum geltenden Konzentrationswert der 23. BlmSchV von 10 µg/m³ (Jahresmittelwert) zu 33 %.

In der 2. EU-Tochterrichtlinie ist für Benzol ein Grenzwert von 5 μ g/m³ (einzuhalten ab dem 1.1.2010) festgeschrieben. Dieser wird auch an der Station mit der höchsten Belastung deutlich unterschritten.

Im Mittel über alle LÜSA-Stationen sind die Jahresmittelwerte des Benzols um 6 %, des Toluols um 12 % und der Xylole um 5 % gegenüber dem Vorjahr zurückgegangen. Die 98-Perzentile von Benzol gingen um 10 %, von Toluol um 12 % und der Xylole um 8 % zurück.

Am Beispiel der Benzol-Immissionen an den Verkehrsmessstationen zeigt Abbildung 2.8 den kontinuierlich rückläufigen Trend bis 2000. Ursachen dafür sind zum überwiegenden Teil die Steigerung der Kfz mit geregelten Katalysatoren und die auf europäischer Ebene beschlossene Senkung des Benzolgehalts im Benzin von bisher maximal 5 % auf 1 %. Auch die Verringerung der Benzol-Verdunstungen beim Tanken durch Einführung von Gaspendel-Anlagen an Tankstellen hat einen Beitrag zur Reduktion der Benzol-Emissionen geleistet. Vom Jahr 2000 zum Jahr 2001 fällt die Abnahme der Benzol-Konzentrationen deutlich geringer aus. Während die Monatsmittelwerte des Benzols im ersten Halbjahr geringfügig höher waren als im Vorjahr, ist ab August ein Rückgang zu verzeichnen.

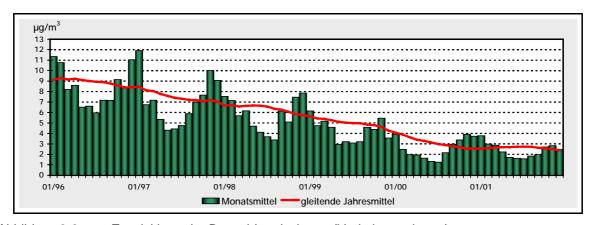


Abbildung 2.8: Entwicklung der Benzol-Immissionen (Verkehrsstationen)

2.3.4 Ruß

Für Ruß stehen im Jahr 2001 Jahreskenngrößen für die in der Tabelle 2.7 aufgeführten 8 Messreihen zur Verfügung. Die Verfügbarkeiten sind in Tabelle 2.2 im Anhang enthalten.

Tabelle 2.7: Jahreskenngrößen Ruß 2000 und 2001 in μg/m³

	Jahresmitt	telwerte (I1)	98-Perzentile (I2)		
Messstation	2000	2001	2000	2001	
Magdeburg/Verkehr 1)	3,4	3,6	10,1	10,6	
Dessau/Albrechtsplatz 1)	-	(2,8)	-	(8,9)	
Wittenberg/Verkehr 2)	6,2	5,7	12,9	13,8	
Halle/Verkehr 1)	5,1	4,9	18,8	16,4	
Leuna 1)	1,0	1,0	3,7	3,4	
Weißenfels/Verkehr 3)	(2,5)	(1,9)	(7,3)	(7,1)	
Sangerhausen/Verkehr 1)	-	(4,1)	-	(12,0)	
Aschersleben 2)	-	(3,5)	-	(8,8)	

- () ... Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte
- ... Aethalometer mit standortabhängigem Kalibrierfaktor
- 2) ... Coulometrie
- ³⁾ ... RP-5400 mit standortabhängigem Kalibrierfaktor

Nach der Einschätzung der Arbeitsgruppe "Krebsrisiko durch Luftverunreinigungen" haben Dieselrußpartikel einen Anteil von mehr als 60 % am immissionsbedingten kanzerogenen Risiko. Seit dem 01.07.1998 gilt nach der 23. BlmSchV ein auf das Jahr bezogener Konzentrationswert von 8 μg/m³ als Beurteilungswert für Dieselruß. Dieser Wert wird an allen LÜSA-Stationen eingehalten.

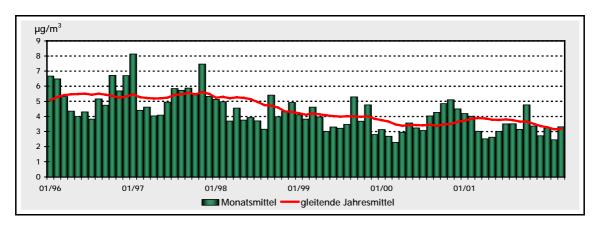


Abbildung 2.9: Entwicklung der Ruß-Immissionen (Verkehrsstationen)

Als weiterer Bewertungsmaßstab für Ruß kann der in der Krebsrisikostudie des LAI genannte Zielwert von 1,5 µg/m³ herangezogen werden, der bei einem Gesamtrisiko von 1 : 2500 der sieben in der Studie genannten Stoffe gilt (vgl. Kapitel 2.8). Dieser Wert ist als Zielwert zu verstehen, der erreicht werden soll, um das Krebsrisiko durch Luftschadstoffe zu minimieren. Die Messstationen im Straßenraum überschreiten deutlich diesen Wert. Der Jahresmittelwert der industriebezogenen Station in Leuna lag jedoch mit 1,0 µg/m³ in den vergangenen beiden Jahren 2000 und 2001 unter diesem Zielwert. Abbildung 2.9 belegt den fallenden Trend bei den Ruß-Konzentrationen.

2.3.5 Partikel PM10, Partikel PM2,5

Mit der Umsetzung der 1. EU-Tochterrichtlinie gewinnt die Überwachung der Partikel PM10-Immissionen an Bedeutung, denn zukünftig gelten für diese Fraktion strengere wirkungsbezogene Grenzwerte. Deshalb wurde die Anzahl der Partikel PM10-Messungen im LÜSA von 13 im Jahr 2000 auf 16 im Jahr 2001 erhöht. In Umsetzung dieser Richtlinie führt das LAU an der Messstation Halle/Ost seit dem Jahr 2000 auch Partikel PM2,5-Messungen im Rahmen des LÜSA durch.

Tabelle 2.13 im Anhang enthält eine Auflistung der verwendeten Messgeräte und die für das Jahr 2000 und 2001 berechneten Kenngrößen.

Abbildung 2.10 fasst die beiden Messstationen mit den längsten Partikel PM10-Messreihen des LÜSA Halle/Verkehr und Weißenfels/Verkehr zu einer Trenddarstellung zusammen. Deutlich wird ein rückläufiger Trend, wobei die Monate Januar 1996 bis April 1996 auffallend hohe Monatswerte aufweisen. Ursache dafür waren die vorherrschende Witterung, welche durch Hochdruckwetterlagen und eingeschränkte Austauschbedingungen bestimmt wurde, und die zu dieser Zeit deutlich höheren Emissionen aus Klein- und Großfeuerungsanlagen. Die Niederschläge und die Temperaturen lagen in diesen

Monaten unter dem Normalwert (arithmetischer Mittelwert 1961 - 1990). Dies zeigt, dass neben den Emissionen auch die Witterungsbedingungen einen bedeutenden Einfluss auf die Partikel PM10-Immissionen haben.

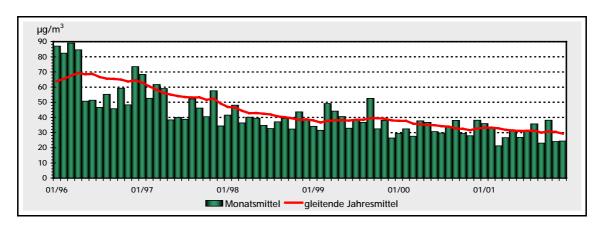


Abbildung 2.10: Entwicklung der Partikel PM10-Immissionen (Verkehrsstationen)

Die Tabelle 2.14 im Anhang enthält alle Auswertungen gemäß der 1. EU-Tochterrichtlinie. Der ab dem 01.01.2005 einzuhaltende Grenzwert der 1. EU-Tochterrichtlinie für den Jahresmittelwert (40 μ g/m³) wurde im Jahr 2001 an einer LÜSA-Messstation (Aschersleben 46 μ g/m³) überschritten. Dagegen wurden an allen Messstationen außer Harzgerode Überschreitungen des ab dem 01.01.2005 gültigen Konzentrationswertes für den Grenzwert (Tagesmittelwert 50 μ g/m³) festgestellt, für den jedoch 35 Überschreitungen zulässig sind. An den Stationen Aschersleben, Halle/Verkehr und Wittenberg/Verkehr wurde der genannte Konzentrationswert häufiger als 35-mal überschritten. Näher eingegangen wird auf diese Ergebnisse im Kapitel 2.8 "Beurteilung der Immissionen nach den EU-Tochterrichtlinien".

Erhöhte Partikel PM10-Konzentrationen durch Ferntransporte im Januar 2001

Am 16. Januar 2001 wurden im Luftüberwachungs- und Informationssystem Sachsen-Anhalt (LÜSA) erste Überschreitungen des Konzentrationswertes der 1. EU-Tochterrichtlinie von 50 μ g/m³ (Tagesmittelwert) für die Partikel PM10-Konzentrationen registriert.

An diesem Tag beschränkten sich die Überschreitungen auf das südliche Sachsen-Anhalt. An den folgenden Tagen stiegen die Partikel PM10-Konzentrationen weiter an, wobei sich das Gebiet mit den höchsten Konzentrationen nach Norden verlagerte. Am 19. und 20. Januar traten Überschreitungen des Konzentrationswertes im gesamten Bundesland auf. So wurden am Freitag, dem 19. Januar an 23 der 24 LÜSA-Messstationen (s. Abbildung 2.11), die die Partikel PM10-Konzentrationen aufzeichnen, Überschreitungen registriert, am Sonnabend, dem 20. Januar an 18 Messstationen.

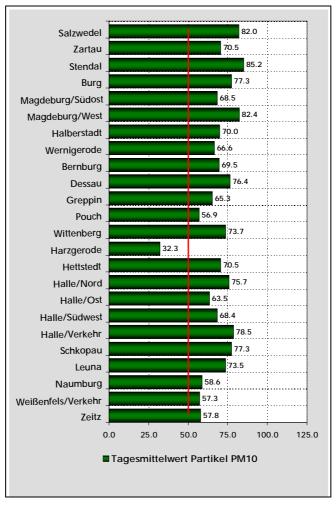


Abbildung 2.11: Partikel PM10-Tagesmittelwerte am 19. Januar 2001 in Sachsen-Anhalt

Der Norden Sachsen-Anhalts war vor allem am 21. Januar betroffen, als auch die höchsten Tagesmittelwerte dieser Episode gemessen wurden. Das maximale Tagesmittel wurde am 21. Januar in Stendal mit 109 μ g/m³ erreicht.

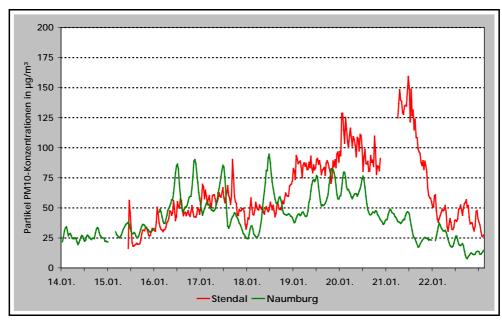


Abbildung 2.12: Verlauf der Partikel PM10-Konzentrationen vom 14. bis 22. Januar 2001 im Süden und Norden Sachsen-Anhalts

Das Konzentrationsniveau wuchs vor allem im Norden Sachsen-Anhalts seit dem 16. Januar stetig an, wie in der Abbildung 2.12 zu erkennen ist.

Die Ursachen für die hohen Partikel PM10-Konzentrationen in dieser Episode und auch für die Differenzierung der nördlichen und südlichen Landesteile liegen in Ferntransporten aus den Industriegebieten Polens und Tschechiens. Dies ergab die Analyse der Trajektorien für diesen Zeitraum. So bildete sich ab dem 16.01. eine südöstliche Strömung aus. Im südlichen Sachsen-Anhalt schwenkten die Trajektorien später weiter nach Süden, während die Luftmassen im nördlichen Teil des Landes weiterhin aus südöstlichen Richtungen einflossen und hohe Konzentrationen an Partikeln aufwiesen.

Auch die Messergebnisse des Landesamtes für Umwelt und Geologie in Sachsen stützen die Analyse, dass Ferntransporte für die erhöhten Partikel PM10-Konzentrationen verantwortlich waren. So wurden an sächsischen Stationen Schwebstaub-Tagesmittelwerte bis zu 133 μ g/m³ gemessen. Im Gebiet zwischen Borna, Leipzig und Delitzsch schwankten die Tagesmittelwerte am 19. Januar zwischen 61 und 81 μ g/m³.

Episode erhöhter Partikel PM10-Konzentrationen im Oktober 2001

Ab dem 11. Oktober gewann ein Hochdruckgebiet Einfluss auf Mitteleuropa. Nach dem Durchzug eines schwachen Tiefausläufers am 12. Oktober setzte sich der Hochdruckeinfluss endgültig in Deutschland durch und führte zu einer typisch herbstlichen Inversionswetterlage mit sehr geringen Windgeschwindigkeiten und Windrichtungen um Süd. Zudem bildeten sich in den Nachmittagsstunden Bodeninversionen aus, die sich z.T. erst in den späten Vormittagsstunden des Folgetages auflösten. Damit waren auch die vertikalen Austauschbedingungen stark eingeschränkt.

Während am Wochenende (13. und 14. Oktober) im ganzen Land die Sonne schien, hielten sich in der Wochenmitte (vor allem ab dem 17. Oktober) z.T. ganztägig Nebelfelder, die sich in der eingeströmten feuchten Meeresluft bildeten. Der Kern des Hochdruckgebietes zog am 18. Oktober Richtung Norwegen ab, wodurch sich eine bis zum östlichen Mitteleuropa reichende Hochdruckbrücke ausbildete. Unter dem Hochdruckeinfluss konnte sich die feuchte Meeresluft langsam erwärmen. Ab dem 17. Oktober stellte sich nach dem Abzug der abgeschwächten Fronten eine gut ausgeprägte Ostströmung ein, die bis zum 21.10. anhielt. Am 21. Oktober wurde durch erneute Frontdurchgänge und Ausbildung einer Tiefdruckrinne über Norddeutschland diese Hochdruckwetterlage beendet.

Die im LAU verfügbaren Trajektorien zeigten am 13. Oktober eine schwache Südwestströmung, die im Verlauf des 14. Oktobers auf südliche bis südöstliche Richtungen drehte. Am 15. Oktober kamen die Luftmassen aus dem Süden. Wie schwach die Luftbewegungen waren, kann daran abgelesen werden, dass die Luftmassen vom Nordrand der Alpen bis zum Immissionsort in Sachsen-Anhalt 144 Stunden benötigten. Im Tagesverlauf des 16. Oktobers drehten die Trajektorien wieder zurück auf westliche Richtungen. Mit dem wieder zunehmenden Hochdruckeinfluss am 18. Oktober drehten die Trajektorien auf östliche und südöstliche Richtungen und verblieben hier bis zum 21. Oktober.

In der Tabelle 2.8 sind die Tagesmittelwerte der Partikel PM10-Belastung an den Messstationen des LÜSA zusammengetragen.

Zu erkennen ist, dass am 13. Oktober erste, vereinzelte Überschreitungen des Konzentrationswertes für den Grenzwert der 1. EU-Tochterrichtlinie (50 µg/m³) registriert wurden. Am 14. Oktober stiegen die Tagesmittelwerte deutlich und vor allem flächendeckend an. Die Zahl der Stationen mit Überschreitungen des Konzentrationswertes stieg von 3 am 13.10. auf 10 am 14.10. an. Noch weiter stiegen die Partikel-PM10-Konzentrationen am 15.10., als 23 von 25 Messstationen des LÜSA Überschreitungen aufwiesen, und auch am 16.10. zeigten immerhin noch 11 Messstationen Überschreitungen an. An den folgenden beiden Tagen wurden weniger Überschreitungen registriert; jedoch traten am 19. und 20.10. bei östlichen Windrichtungen erneut flächendeckend Überschreitungen des Konzentrationswertes auf. Erst mit dem Abschluss der Hochdruckperiode am 21.10. sanken auch die Partikel PM10-Konzentrationen deutlich ab.

Damit wurde durch das LÜSA wieder eine Episode erhöhter Partikel PM10-Konzentrationen registriert, die sich über mehrere Tage erstreckte.

Untersuchungen der Überschreitungen des Konzentrationswertes des EU-Grenzwertes im Jahr 2000 ergaben, dass Überschreitungen der 50 µg/m³ durch Tagesmittelwerte an Stadtgebietsstationen fast immer episodenhaft auftreten. Es wird nur in wenigen Fällen beobachtet, dass einzelne Stadtgebietsstationen den Konzentrationswert überschreiten. Von 54 Fällen im Jahr 2000, an denen im LÜSA an einem Tag nur eine Station die 50 µg/m³ überschritt, waren es in 27 Fällen Verkehrsmessstationen und in 17 Fällen war es die Messstation Bernburg, die auf Grund ihrer industriebezogenen Lage zu relevanten Emissionsquellen und auf Grund ihrer Straßennähe eine Sonderstellung einnimmt. Nur in

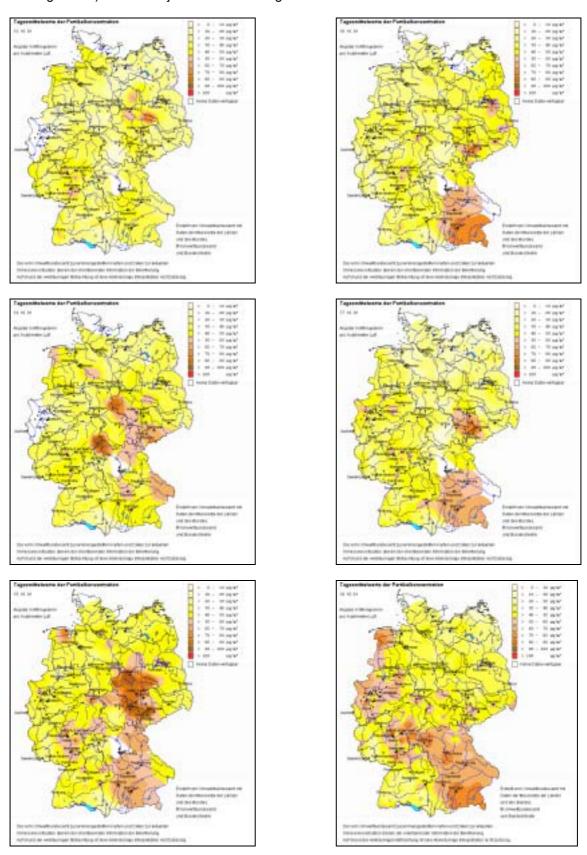
3 Fällen überschritt eine industriebezogene Station und in 7 Fällen eine Stadtgebietsstation den Konzentrationswert als Einzelstation.

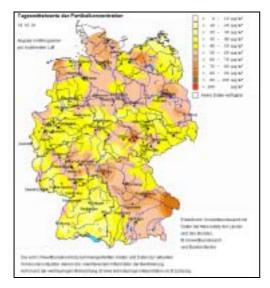
Bei den episodenhaften, flächendeckenden Überschreitungen des Konzentrationswertes spielen in allen Fällen Ferntransport-Prozesse eine große Rolle. So herrschte in allen Episoden im Jahr 2000, in denen mehr als 10 LÜSA-Messstationen den Konzentrationswert überschritten, eine antizyklonal geprägte Wetterlage (Hochdruckeinfluss, östliche Windrichtungen) vor.

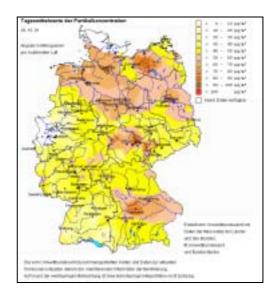
So war es auch in der hier beschriebenen Episode Anfang Oktober 2001. Hauptursache der Konzentrationswertüberschreitungen waren Ferntransporte aus südlichen und südöstlichen Richtungen. Dennoch gab es zwei Besonderheiten bei dieser Episode. Zum einen wurde am 14.10. ein recht seltenes Ereignis beobachtet, als Sahara-Staubpartikel bis nach Deutschland transportiert wurden, zum anderen trugen im betrachteten Zeitraum in Folge der eingeschränkten Austauschbedingungen lokale Emissionen aus der Verbrennung von Gartenabfällen zu den Überschreitungen des Konzentrationswertes bei.

Tabelle 2.8: Tagesmittelwerte der Partikel PM10-Konzentrationen in Sachsen-Anhalt in μg/m³

	Okto	ber 2	2001							
Messstation	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.
Bernburg	46	49	79	55	42	46	51	63	38	27
Bitterfeld	38	47	80	50	27	42	45	52		29
Burg	36	39	67	50	23	36	54	78	47	21
Dessau	37	44	66	50	28	33	40	42	31	18
Dessau/Albrechtsplatz	51	42	87	70	28	38	51	46	33	28
Greppin	38	45	70	44	18	42	46	65	33	19
Halberstadt	48	52	62	36						
Halle/Nord	34	52	80	45	41	44	51	49	32	19
Halle/Ost	37	51	88	56	31	43	46	55	32	22
Halle/Südwest	38	55	83	43	39	38	42	45	28	13
Halle/Verkehr	57	62	109	62	46	61	57	60	38	29
Hettstedt	39	52	65	46	68	44	62	56	35	22
Leuna	38	61	81	50	28	38	51	38	27	14
Magdeburg/Südost	57	45	95	58	42	57	67	57	40	29
Magdeburg/West	48	42	75	64	54	44	48	53	39	19
Naumburg	43	59	93	59	43	47	96	61	39	20
Pouch	34	43	71	42	25	40	42	54	33	16
Salzwedel	32	31		48	28					
Schkopau	43	61	85	54	34	43	51	45	35	22
Stendal	42	42	55	45	31	41	66	63	52	28
Weißenfels/Verkehr	42	64	88	60	41	64	60	58	32	21
Wernigerode	29	83	94	49	53					
Wittenberg	49	47	81	54	36	46	57	61	42	21
Zartau	28	38	43	34	26	38	51	57	51	19
Zeitz	26	29	60	60	40	41	94	71	35	20
Station mit Tagesmittel größer als 50 µg/m³	3	10	22	10	3	3	15	16	2	0


fettgedruckt:


Überschreitungen des Konzentrationswertes des EU-Grenzwertes


Eindrucksvoll kann diese Entwicklung der Feinstaub-Belastung in Sachsen-Anhalt und auch bundesweit in den flächendeckenden Immissionskarten, die das Umweltbundesamt aus den aktuellen, vorgeprüften Messwerten der Ländermessnetze erstellt, nachvollzogen werden. Diese sind in der Abbildung 2.13 für den Zeitraum 13. bis 21.10. dargestellt.

Diese Darstellung und die Auswertung der Trajektorien zeigen, dass Ferntransporte aus südlichen Richtungen für die flächendeckende Partikel PM10-Belastung verantwortlich waren. Die Quellen der

erhöhten Partikel PM10-Belastung (industrielle Quellen, natürliche Quellen, Sekundärpartikel-Bildungen u.a.) sind dabei jedoch noch nicht geklärt.

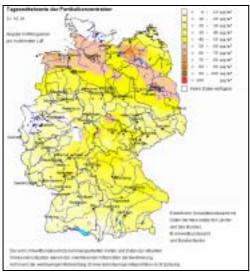


Abbildung 2.13 Flächendeckende Partikel PM10-Belastung in Deutschland vom 13. bis zum 21.10.2001 (Quelle: Umweltbundesamt auf Basis von vorgeprüften Daten der Ländermessnetze)

In seltenen Fällen kann es vorkommen, dass durch Sandstürme in der Sahara Staubpartikel in höhere Luftschichten gelangen und dann über sehr weite Entfernungen transportiert werden. Auf diese Art und Weise wird Sahara-Staub bis zu den Azoren, aber auch bis nach Südamerika transportiert. In Deutschland ist dieses Phänomen unter dem Namen "Blutregen" seit dem Mittelalter bekannt. Der Sahara-Staub hat eine rötliche Farbe. Wird dieser bei Niederschlag ausgewaschen, erhält der Regen oder der Schnee eine rötliche Färbung, woher der Namen "Blutregen" abgeleitet wurde.

Solch ein Ereignis wurde am 14.10. beobachtet. Ein Höhenkeil reichte über das Mittelmeer bis nach Deutschland hinein und ermöglichte einen präfrontalen Transport subtropischer Kontinentalluft, die den Saharastaub nach Deutschland transportierte.

Die rötliche Färbung wurde am 14.10. in den Nebelablagerungen am Boden beobachtet. Aber auch die Filterflecken der im LÜSA betriebenen Partikel-Messgeräte weisen eine rotbraune Färbung an diesem Tage auf, die auf den hohen Anteil von Sahara-Staubpartikeln zurückzuführen ist.

Die Abbildung 2.14 zeigt die Filterflecken ausgewählter Schwebstaub-Messgeräte im Zeitraum um den 14. Oktober.

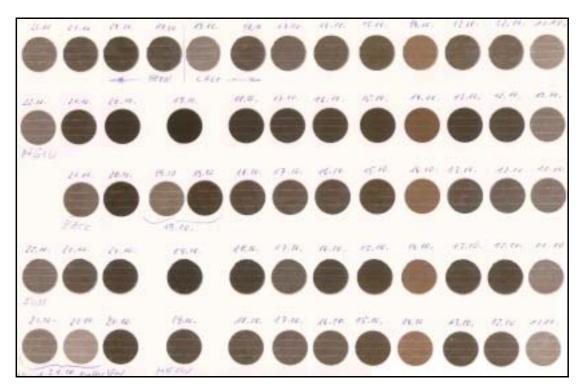


Abbildung 2.14: Filterflecken der Partikel PM10-Messgeräte an den LÜSA-Messstationen Leuna, Naumburg, Zeitz, Schkopau und Halle/Südwest Anfang Oktober 2001

Zusätzlich zu der großräumigen Belastung in Folge von Partikel PM10-Ferntransporten wurden in einigen Städten kurzzeitige Belastungsspitzen registriert (Halberstadt, Magdeburg, Wernigerode). Diese Belastungsspitzen traten zeitgleich mit einer erheblichen Belästigung durch Rauchgase aus der zu diesen Zeiträumen gestatteten, privaten Verbrennung von Gartenabfällen auf.

Die lokalen Emissionen dieser Verbrennungen leisteten einen Beitrag zu den hohen Partikel PM10-Belastungen und trugen damit auch zu den Überschreitungen des Konzentrationswertes des EU-Grenzwertes an diesen Tagen bei.

In Halberstadt war das Verbrennen bereits am Freitag, dem 12. Oktober von 08 bis 18 Uhr gestattet. In den Vormittagsstunden wurde bei einem niedrigen Partikel PM10-Belastungsniveau eine kurzzeitige Belastungsspitze registriert (s. Abbildung 2.15). Noch höher war die Partikel PM10-Spitzenkonzentration, die auf die Gartenabfallverbrennung zurückgeführt wird, am Sonnabend, dem 13. Oktober. An diesen beiden Tagen gab es massive Beschwerden aus der Bevölkerung beim Gesundheitsamt der Stadt Halberstadt.

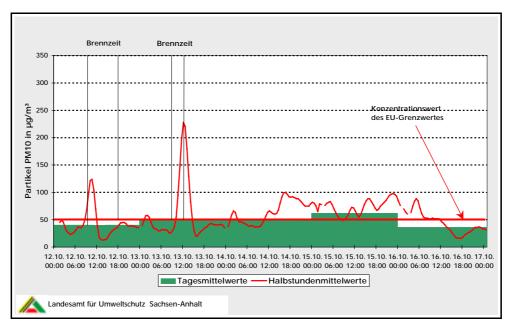
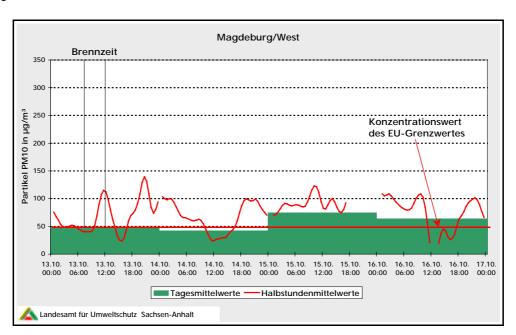



Abbildung 2.15: Partikel PM10-Konzentrationen in Halberstadt

Auch in Magdeburg wurden am 13. Oktober erhöhte Partikel PM10-Belastungen gemessen, die auf die Verbrennung von Gartenabfällen zurückzuführen sind (vgl. Abbildung 2.16). Die kurzzeitigen Spitzenbelastungen führten zur Überschreitung des Konzentrationswertes für den EU-Grenzwert an diesem Tag.

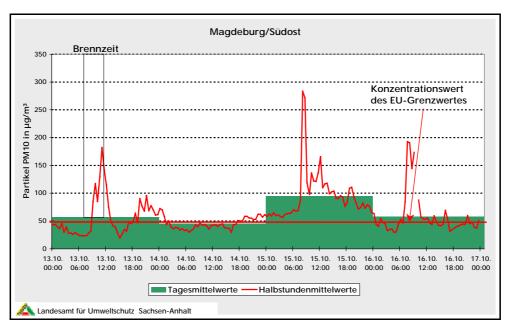


Abbildung 2.16: Partikel PM10-Konzentrationen in Magdeburg

In Wernigerode war das Verbrennen am 15. Oktober erstmals im Herbst 2001 erlaubt. An diesem Tage häuften sich die Beschwerden aus der Bevölkerung über eine hohe Rauchbelästigung. Die Messergebnisse zeigen (Abbildung 2.17), dass zusätzlich zu dem hohen Niveau der großräumigen Belastung Spitzenbelastungen während der erlaubten Brennzeit am Tage registriert wurden. Hier wird ebenfalls ein unmittelbarer Zusammenhang gesehen.

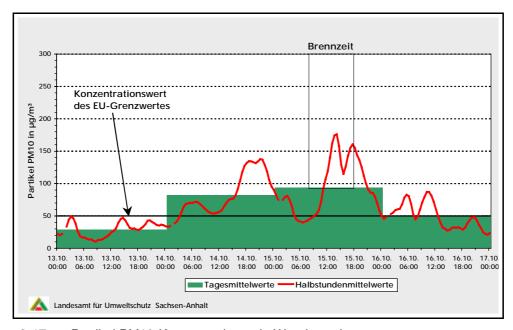


Abbildung 2.17: Partikel PM10-Konzentrationen in Wernigerode

Auffällig sind weiterhin die hohen Spitzenkonzentrationen an den Stationen Burg, Greppin und Hettstedt am 17., 19. und 20. Oktober, die ebenfalls mit erlaubten Verbrennungen zusammenfielen.

Die im Zeitraum vom 13. bis 21. Oktober landesweit registrierten Überschreitungen des Konzentrationswertes für den EU-Grenzwert gehen in erster Linie auf Ferntransport-Prozesse zurück. Zusätzlich wurden jedoch erhöhte Partikel PM10-Konzentrationen registriert, die auf vermeidbare lokale Emissionen zurückzuführen sind. Diese kurzzeitigen Spitzenkonzentrationen führten ebenfalls zu einzelnen Überschreitungen des Konzentrationswertes in mehreren Kommunen, in denen das Verbrennen von Gartenabfällen gestattet war.

Erhöhte Partikel PM10-Konzentrationen im Dezember 2001

In der Woche vom 10. bis zum 16. Dezember 2001 wurden durch das Luftüberwachungs- und Informationssystem Sachsen-Anhalt (LÜSA) erhöhte Partikel PM10-Konzentrationen registriert. Die Konzentrationen überschritten dabei den Konzentrationswert von 50 μ g/m³ des künftig geltenden Grenzwertes.

Die erste einzelne Überschreitung trat am 9. Dezember an der Verkehrsmessstation in Halle auf. Am folgenden Tag war der gesamte südöstliche Bereich Sachsen-Anhalts betroffen, d.h. die Gebiete südlich von Halle und der Raum Dessau-Bitterfeld-Wittenberg.

Wetterbestimmend an diesem Tage war ein Hoch über England, das Tiefausläufer von Skandinavien nach Mitteleuropa transportierte. Damit lag über Mitteleuropa eine Luftmassengrenze. Diese Grenze lässt sich auch in den Trajektorien nachvollziehen. Während die Trajektorien mit Zielorten im südlichen Sachsen-Anhalt ihre Bahnen weit über Polen hinweg zogen und die Luftmassen aus südöstlichen Richtungen über die Industriegebiete Polens herantransportierten, wiesen die Trajektorien im nördlichen Sachsen-Anhalt nahezu geschlossene Bahnen über Ostdeutschland und Westpolen auf.

Die Ursachen für die erhöhten Partikel PM10-Konzentrationen im südöstlichen Sachsen-Anhalt werden deshalb in Ferntransporten gesehen. Der höchste Tagesmittelwert am 10. Dezember 2001 betrug 69 µg/m³.

Eine ähnliche Situation lag am 14. Dezember vor, als flächendeckend im gesamten Land Überschreitungen des Konzentrationswertes des künftig geltenden EU-Grenzwertes registriert wurden. In den Tagen zuvor wurden frische Luftmassen von Nordost nach Sachsen-Anhalt transportiert. Dagegen drehten die Trajektorien am 14.12. auf Ost, so dass auch an diesem Tage von Ferntransporten als Ursache für die Überschreitungen ausgegangen wird. Das Belastungsniveau lag dabei höher als am 10. Dezember und erreichte Werte bis 82 μ g/m³ in Bernburg (Tagesmittelwert).

Die Belastungsgebiete sind sehr gut in den bundesweiten Karten des Umweltbundesamtes zu erkennen, die auf der Basis der Messdaten aus den Bundesländern erstellt werden. Die Karten für den 10. und 14. Dezember sind in den folgenden Abbildungen 2.18 und 2.19 dargestellt.

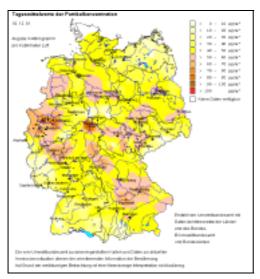
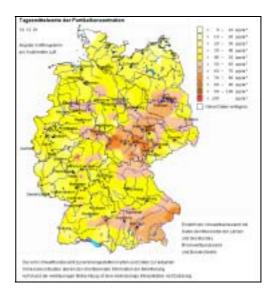
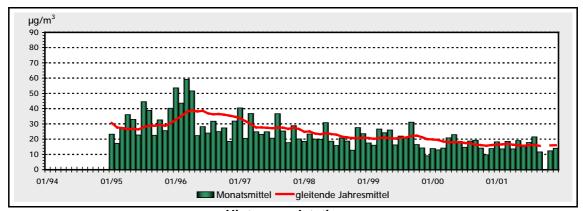


Abbildung 2.18: Bundesweite Partikel PM10-Konzentrationen am 10. Dezember 2001




Abbildung 2.19: Bundesweite Partikel PM10-Konzentrationen am 14. Dezember 2001

2.3.6 Schwebstaub

Im LÜSA standen für das Jahr 2001 13 Messreihen zur Einschätzung der Immissionen durch Schwebstaub zur Verfügung. Die Messergebnisse werden in Tabelle 2.13, Blatt 1 im Anhang dargestellt. Die prozentuale Verfügbarkeit der einzelnen Messreihen ist in Tabelle 2.2 im Anhang angegeben. An den Messstationen in Magdeburg/Zentrum-Ost, Burg, Greppin, Pouch, Schkopau und Wittenberg wurden die Schwebstaubmessungen in Umsetzung der 1. EU-Tochterrichtlinie durch Partikel PM10-Messungen ersetzt (siehe Kapitel 2.3.5 Partikel PM10, Partikel PM2,5).

Zur Bewertung der Schwebstaub-Jahreskenngrößen können formell die Grenzwerte der TA Luft 86 herangezogen werden. Mit der Umsetzung der 1. EU-Tochterrichtlinie konzentrieren sich die Bewertungen der Wirkungen auf die menschliche Gesundheit zunehmend auf die Partikel PM10-Konzentrationen. Es traten keine Überschreitungen der Grenzwerte der TA Luft 86 (Dauerbelastung: IW1 = 0,15 mg/m³, Kurzzeitbelastung: IW2 = 0,30 mg/m³) auf.

Ähnlich wie bei den Partikel PM10-Konzentrationen weisen auch die Schwebstaub-Immissionen einen fallenden Trend auf (s. Abbildung 2.20). Auch hier fallen die relativ hohen Monatswerte im Jahr 1996 auf.

Hintergrundstationen

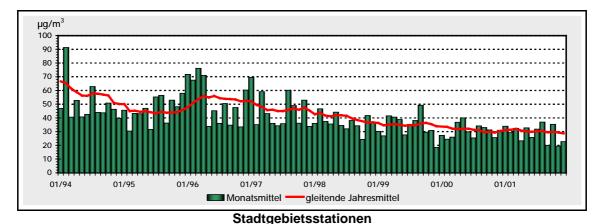


Abbildung 2.20: Entwicklung der Schwebstaub-Immissionen

2.3.7 Inhaltsstoffe in der Fraktion Partikel PM10

Im Jahr 2001 wurden Inhaltsstoffe der Feinstaub-Fraktion Partikel PM10 (hier Schwermetalle) an zwei LÜSA-Messstationen (Magdeburg/Zentrum-Ost und Halle/Verkehr) gemessen. In den vergangenen Jahren bezogen sich die Angaben zu den Staubinhaltsstoffen an der Messstation Magdeburg/Zentrum-Ost auf den Schwebstaub (TSP). Erst am 03.02.2001 wurden die Messungen auf Partikel PM10 umgestellt. Dieser Sachverhalt ist bei der Interpretation zu beachten.

Tabelle 2.9 enthält die Jahresmittelwerte 2000 und 2001 von Blei, Cadmium, Chrom, Mangan, Nickel und Vanadium der LÜSA-Messstellen Magdeburg/Zentrum-Ost und Halle/Verkehr. Der Grenzwert der TA Luft 86 (vgl. Kapitel 2.8) sowie der Grenzwert der 22. BlmSchV (EU-Richtlinie 82/884/EWG) wurden eingehalten (s. Tabelle 2.10 im Anhang).

Die 1. EU-Tochterrichtlinie schreibt einen Grenzwert für Blei vor, der ab dem 01.01.2005 einzuhalten ist und 0,5 μg/m³ beträgt. Für das Jahr 2001 beträgt die Summe aus Grenzwert und Toleranzmarge 0,9 μg/m³. Beide Grenzwerte sind deutlich unterschritten.

Für Cadmium steht der Immissionswert der TA Luft 86 $(0,04~\mu g/m^3)$ für die Bewertung zur Verfügung. Dieser wird deutlich unterschritten. Auch der Vorschlag des LAI für einen Zielwert (vgl. Kapitel 2.8) wird nicht überschritten.

Für Nickel und Chrom können ebenfalls die Vorschläge des LAI für Beurteilungswerte herangezogen werden. Beide Vorschläge werden durch die Jahresmittelwerte an den beiden Stationen Magdeburg/Zentrum-Ost und Halle/Verkehr nicht erreicht.

Auch für Vanadium schlägt der LAI einen Beurteilungswert vor, der durch die Jahresmittelwerte 2001 deutlich unterschritten wird.

Tabelle 2.9: Jahresmittelwerte der Inhaltsstoffe in Partikel PM10 2000/2001

	Halle/	Verkehr	Magdeburg/	Zentrum-Ost
Komponente	2000	2001	2000 1)	2001
Blei in µg/m³	0,02	0,02	0,01	0,02
Cadmium in ng/m³	0,5	0,2	0,2	0,2
Chrom in ng/m³	2,5	2,3	1,5	3,5
Mangan in ng/m³	3,3	4,6	8,1	6,2
Nickel in ng/m³	3,2	5,3	1,8	6,3
Vanadium in ng/m³	1,0	0,6	1,0	1,1

^{1) ...} bezogen auf Schwebstaub TSP

2.3.8 Schwefeldioxid

Für das Jahr 2001 standen im LÜSA die in der Tabelle 2.15 im Anhang dargestellten Jahreskenngrößen von 27 Messreihen zur Einschätzung der Immissionsbelastung durch Schwefeldioxid zur Verfügung. Zu den Verfügbarkeiten wird auf die Tabelle 2.2 im Anhang verwiesen. Die niedrigen Schwefeldioxid-Konzentrationen des Vorjahres sind 2001 noch weiter zurückgegangen (Jahresmittelwerte um 31 %, Perzentile um 5 %). Seit einschließlich 1994 wurden die Immissionswerte der TA Luft 86 für Schwefeldioxid nicht mehr überschritten. Abbildung 2.21 stellt den rückläufigen Trend seit 1991 dar.

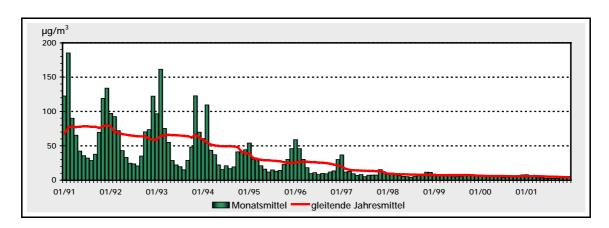
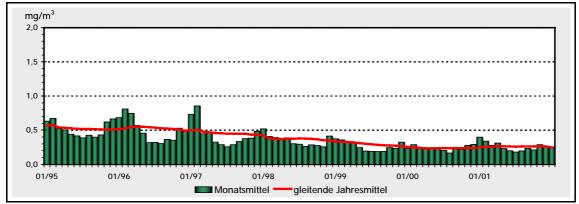


Abbildung 2.21: Entwicklung der Schwefeldioxid-Immissionen (Stadtgebiets- und Industriebezogene Stationen)


Die Auswertungen gemäß der 1. EU-Tochterrichtlinie zu den Grenz- und Alarmwerten sowie zu den Beurteilungsschwellen sind in Tabelle 2.16 im Anhang enthalten. Auch hier wurden keine Überschreitungen der Grenzwerte registriert.

2.3.9 Kohlenmonoxid

Die Tabelle 2.17 im Anhang enthält die Jahresmittelwerte (I1) und die 98-Perzentile (I2) der 28 Kohlenmonoxid-Messreihen für die Jahre 2000 und 2001. Die Verfügbarkeiten der Kohlenmonoxid-Messreihen sind in der Tabelle 2.2 im Anhang zusammengefasst. Als Bewertungsmaßstäbe für die Jahreskenngrößen können die im Kapitel 2.8 dargestellten Immissionswerte der TA Luft 86 (IW1 =

10 mg/m³, IW2 = 30 mg/m³) herangezogen werden. Diese wurden selbst an der Station mit den höchsten Konzentrationen im Straßenraum (Wittenberg/Verkehr) nicht einmal zu einem Zehntel erreicht.

Auch beim Kohlenmonoxid ist ein rückläufiger Trend zu beobachten (Abbildung 2.22)

Stadtgebiets- und Industriebezogene Stationen

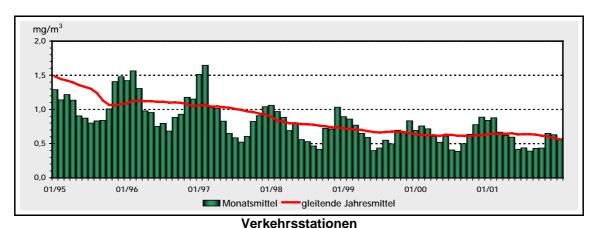


Abbildung 2.22: Entwicklung der Kohlenmonoxid-Immissionen

Tabelle 2.18 im Anhang enthält die maximalen Achtstundenmittelwerte der Kohlenmonoxid-Konzentrationen. Auf dieses Luftqualitätsmerkmal zielt der ab dem 01.01.2005 einzuhaltende Grenzwert der 2. EU-Tochterrichtlinie ab, der im Jahr 2001 an allen Stationen deutlich unterschritten wurde.

2.3.10 Polyzyklische aromatische Kohlenwasserstoffe (PAH)

Polyzyklische aromatische Kohlenwasserstoffe (PAH) entstehen z.B., wenn organisches Material (fossile Energieträger, Holz, Kraftstoffe, u.a.) unvollständig verbrannt wird. Sie stellen ein vielfältiges Stoffgemisch dar mit z.T. hochtoxischen und kanzerogenen Substanzen. Für als krebserzeugend bekannte Stoffe gilt es die Konzentrationen so gering wie möglich zu halten, um das Krebsrisiko zu minimieren.

Als Leitsubstanz der PAH wird Benzo(a)pyren (B(a)P) herangezogen. Für Benzo(a)pyren, das einen Anteil von fünf bis zehn Prozent an der Gesamtfraktion der PAH hat, wird vom Länderausschuss für Immissionsschutz (LAI) ein Zielwert von 1,3 ng/m³ empfohlen.

PAH wurden im Jahr 2001 an der Messstation Magdeburg/Verkehr im Abstand von zwei Tagen bestimmt. Der Zielwert für Benzo(a)pyren wurde dort in 2001 zu ca. einem Drittel erreicht.

Derzeit befindet sich der Entwurf einer 4. EU-Tochterrichtlinie in der Bearbeitung, in der u.a. ein Grenzwert Benzo(a)pyren als Leitkomponente der PAH vorgesehen ist. Dieser vorgeschlagene Grenzwert beträgt 1 ng/m³. Als Langfristzielwert werden 0,1 ng/m³ geplant. Der angestrebte Grenzwert wurde an der Messstation Magdeburg/Verkehr sicher eingehalten, der Langfristzielwert jedoch nicht. Bei allen gemessenen Einzelkomponenten ist in 2001 im Vergleich zum Vorjahr kein Trend ersichtlich, wie die Jahresmittelwerte in der Tabelle 2.10 zeigen.

Tabelle 2.10: Jahresmittelwerte polyzyklische aromatische Kohlenwasserstoffe (PAH) 2000 und 2001 in ng/m³

Messstation				Ja	hresmitte	elwerte (I1)					
	Jahr	lahr B(a)A CHR B(b)F B(a)P DB(ah)A COR B(ghi)P B(k)F									
Magdeburg/Verkehr	2000	0,43	0,74	0,70	0,45	0,07	0,21	0,59	0,33		
	2001	0,48	0,77	0,77	0,45	0,07	0,19	0,56	0,35		

B(a)ABenzo(a)anthracenCHRChrysenB(b)FBenzo(b)fluoranthenB(k)FBenzo(k)fluoranthenB(a)PBenzo(a)pyrenDB(ah)ADibenzo(ah)anthracenB(ghi)PBenzo(ghi)perylenCORCoronen

2.3.11 Schwefelwasserstoff

Im LÜSA wurden im Jahr 2001 an den beiden industriebezogenen Messstationen in Leuna und Greppin Schwefelwasserstoff-Immissionen gemessen. Schwefelwasserstoff-Immissionen geben auf Grund ihrer Geruchsintensität häufig Anlass zu Beschwerden, wohingegen gesundheitliche Auswirkungen bei Konzentrationen im Niveau der registrierten Immissionen nicht zu erwarten sind.

Das WHO-Regionalbüro für Europa hat als Leitwerte für Schwefelwasserstoff 150 μ g/m³ als Tagesmittelwert (Gesundheitsschutz) und 7 μ g/m³ als Halbstundenmittelwert (Geruchsschwelle) festgelegt (vgl. Kapitel 2.8). Letzterer Wert wurde im Jahr 2001 in Greppin 232 mal überschritten, in Leuna 6-mal, wobei der maximale Halbstundenmittelwert in Greppin 109 μ g/m³ und in Leuna 12 μ g/m³ betrug. Die registrierten Konzentrationen im restlichen Zeitraum des Jahres waren jedoch so gering, dass sie im Jahresmittel unterhalb der Nachweisgrenze lagen (Tabelle 2.11).

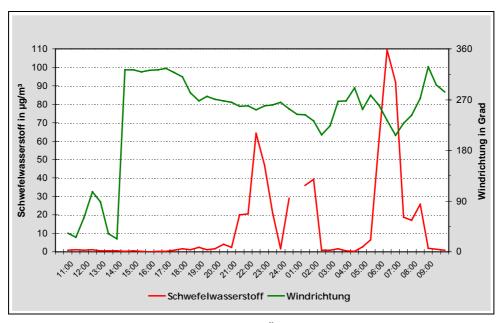


Abbildung 2.23: Halbstundenmittelwerte an der LÜSA-Messstation Greppin vom 11.01.01 10:30 Uhr bis 12.01.01 9:30 Uhr

Abbildung 2.23 zeigt den Verlauf der H_2S -Konzentrationen in Greppin bei Auftreten des maximalen Halbstundenmittelwertes 2001 und die Windrichtung. Diese erhöhten Immissionen gehen auf industrielle Emissionen zurück.

Tabelle 2.11: Jahreskenngrößen Schwefelwasserstoff 2000 und 2001 in µg/m³

	Jahresmitt	telwert (I1)	98-Perzentil (I2)			
Messstation	2000	2001	2000	2001		
Greppin	1,1*	1,1*	3,1	5,1		
Leuna	1,1*	1,1*	2,6	2,4		

^{* ...} Bei Werten kleiner als die Nachweisgrenze wurde ½ Nachweisgrenze eingesetzt

2.3.12 Kohlendioxid

Tabelle 2.12: Jahreskenngrößen Kohlendioxid 2000 und 2001 in ppm

Messstation	Jah	resmittelwe	ert	98-Perzentil				
	1999	2000	2001	1999	2000	2001		
Brocken	356	356	356	386	377	377		

Das LAU betreibt auf dem Brocken ein Kohlendioxid-Messgerät, um den Trend dieses klimarelevanten Treibhausgases zu beobachten. Im Jahresmittel traten von 2000 zu 2001 keine Änderungen auf (s. Tabelle 2.12).

2.4 Ergebnisse der Depositionsmessungen

2.4.1 Staubniederschlag/Schwermetalle

Staubniederschlag

Im Rahmen der Depositionsuntersuchungen wurde im Jahre 2001 landesweit der Staubniederschlag an 80 Messstellen ermittelt. In dieses Messnetz sind nahezu alle Stadtgebiets- und Verkehrsmessstationen sowie die industriebezogenen Stationen des LÜSA einbezogen. In Tabelle 2.19 im Anhang sind für jede Messstelle die Mittelwerte des Staubniederschlages der letzten drei Jahre aufgeführt. Abbildung 2.24 zeigt die Lage der Messstellen in Sachsen-Anhalt.

Abbildung 2.24: Messstellen für Staubniederschlag und Elemente – Landesmessnetz 2001

Wie in den Vorjahren hat sich die Belastung durch Staubniederschlag auch 2001 landesweit weiter verringert. Im Durchschnitt liegen die vergleichbaren Jahresmittelwerte von 2001 um 11 % unter denen von 2000.

Von den 80 Messstellen weist bei punktbezogener Bewertung keine der Messstellen eine Überschreitung des Immissionswertes der TA Luft IW1 = 0,35 g/(m²d) (arithmetischer Jahresmittelwert) auf. Es ist zu erwarten, dass kaum noch wesentliche Senkungen auftreten werden, da der Staubniederschlag bereits ein niedriges Niveau erreicht hat, was auf die gravierende Verminderung der Staubemissionen der industriellen Emittenten infolge Stilllegungen, verbesserter Abgasreinigung und auf die

Umstellung des Brennstoffes von Kohle auf Öl oder Gas zurückzuführen ist. Letzteres gilt auch für Kleinfeuerungsanlagen in Gewerbe und Haushalten.

Schwermetall- und Arsengehalte im Staubniederschlag

Aus den Quartalsproben des Staubniederschlages wurden acht Schwermetalle und Arsen analytisch unter Einsatz moderner Analysenverfahren (ICP-OES und ICP-MS) bestimmt.

Vergleicht man die Jahresmittel der Schwermetallgehalte des Staubniederschlages (Tabelle 2.20 im Anhang) mit den Immissionswerten für Schadstoffdepositionen der TA Luft 2002 (vgl. Kapitel 2.8), so ist der Immissionswert für Blei von 100 µg/(m²d) an zwei Messstellen, in Hettstedt An der Brache mit 113,8 µg/(m²d) und An der Bleihütte mit 101,7 µg/(m²d) leicht überschritten. Der Cadmiumwert ist an den beiden genannten Messstellen zwar mit 1,5 bzw. 1,4 µg/(m²d) ebenfalls erhöht, erreicht jedoch nicht den Immissionswert von 2 µg/(m²d). Gleiches gilt für Nickel und Arsen, deren Jahresmittelwerte im Raum Hettstedt und Helbra unterhalb der Immissionswerte der TA Luft 2002 (Nickel: 15 µg/(m²d)), Arsen: 4 µg/(m²d)) liegen. Die Prüf- und Maßnahmenwerte zum Schutze des Bodens (Tab. 2.38) werden beim Kupfer an acht von elf Messstellen im Mansfelder Land teilweise erheblich überschritten, während die Immissionswerte für Cadmium, Chrom und Nickel eingehalten werden. Im Vergleich zum Vorjahr waren an den einzelnen Messpunkten sowohl Anstiege als auch Verringerungen der Schwermetallanteile im Staubniederschlag zu verzeichnen. Nur beim Arsen liegen die Werte 2001 im Mansfelder Land unter denen des Vorjahres.

Auch am Standort der Verkehrsmessstation am Riebeckplatz in Halle wurden erneut hohe Elementgehalte gemessen. Mit 14,9 μ g/(m²d) wird der in der TA Luft 2002 für Nickel vorgeschriebene Immissionswert knapp unterschritten. Die relativ hohen Elementgehalte können auf Abrieb an den Oberleitungen der benachbarten Straßenbahn und auf den starken Straßenverkehr zurückgeführt werden. Im Mittel aller Messstellen des Landes haben sich die Gehalte an Schwermetallen 2001 gegenüber 2000 bei Nickel erheblich und bei Zink, Chrom und Vanadium leicht erhöht (Abbildung 2.25).

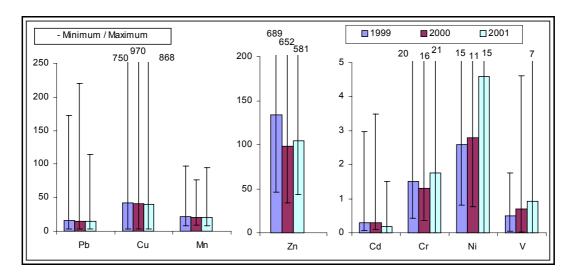


Abbildung 2.25: Inhaltsstoffe des Staubniederschlags in μg/(m²d), Vergleich der Jahresmittel und Schwankungsbreiten 1999 bis 2001 im Landesdurchschnitt

2.4.2 Quecksilber als Gesamtdeposition

Um die Auswirkung von Rückbaumaßnahmen an quecksilberkontaminierten Altanlagen in Schkopau und Bitterfeld immissionsseitig zu überwachen, wurden seit 1998 sechs Quecksilber-Messstellen in Schkopau und Korbetha und seit 1999 sieben bzw. seit 2000 sechs Quecksilber-Messstellen im Umfeld einer quecksilberverunreinigten Altanlage (Chlor I) in Bitterfeld betrieben (Abbildung 2.26 und 2.27).

Aufgrund seiner physikalischen Eigenschaften kann Quecksilber nicht gemeinsam mit den anderen Elementen in der Gesamtdeposition bestimmt werden. Außerdem muss bedacht werden, dass Quecksilber, das in der Atmosphäre hauptsächlich in elementarer Form vorkommt, als Deposition nur unvollständig erfasst werden kann.

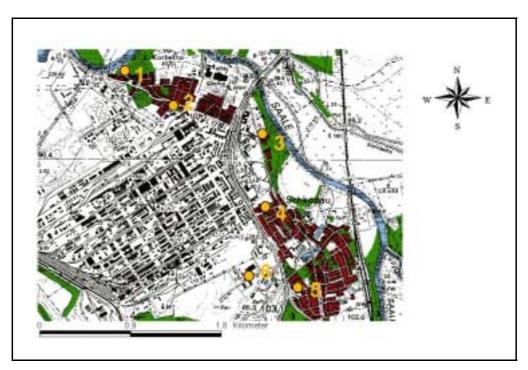


Abbildung 2.26: Quecksilber-Messstellen in Schkopau, Quecksilber-Depositionen 2001

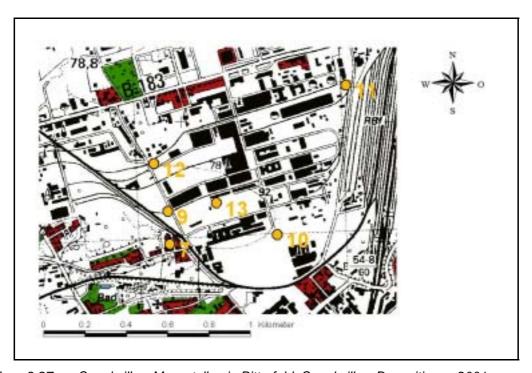


Abbildung 2.27: Quecksilber-Messstellen in Bitterfeld, Quecksilber-Depositionen 2001

Dennoch konnten auf diese Weise mit geringem Aufwand Orientierungswerte für die Anwesenheit von Quecksilber in der Atmosphäre gewonnen werden. Zur monatlichen Erfassung der Quecksilber-Deposition wurden Bergerhoff-Sammler verwendet, wobei die Sammelgläser vor der Exposition mit 20 ml einer $2n-H_2SO_4$ -Lösung versetzt wurden, um Verluste durch Verflüchtigung zu minimieren. Die analytische Bestimmung erfolgte im Labor für Luftanalytik des LAU mit der AAS- Kaltdampftechnik. Die in Tabelle 2.13 und 2.14 aufgeführten Monatswerte der Quecksilber-Gesamtdeposition zeigen erhebliche Schwankungen, deren Spitzenwerte auf Einzelereignisse (z.B. maximaler Eintrag aus benachbarten Altlasten bei ungünstigen Witterungsverhältnissen) zurückgeführt werden. Legt man den in der TA Luft 2002 festgelegten Immissionswert für die Quecksilber-Deposition von 1 μ g/(m^2 d) zugrunde, so ist für die Jahresmittelwerte aus dem Raum Schkopau keine Überschreitung zu verzeichnen. Infolge der Abrissarbeiten am ehemaligen Chlor I-Betrieb im Chemiepark Bitterfeld in der

Zeit von Oktober 2000 bis Juli 2001 traten während dieser Zeit sehr hohe Quecksilber-Depositionswerte auf, die an vier Messstellen zu erheblichen Überschreitungen des Immissionswertes von 1 μ g/(m²d) durch die Jahresmittelwerte von 2001 führten (Abbildung 2.28). Offensichtlich waren dabei in der unmittelbaren Umgebung trotz der Anwendung aufwendiger Umweltschutzmaßnahmen erhöhte Quecksilber-Depositionen nicht zu vermeiden. Dies trifft in geringerem Maße auch auf das benachbarte Wohngebiet (Messstelle BTF-Hg 7) zu. Nach Abschluss der Abrissarbeiten im Juli 2001 liegen die Monatswerte der Quecksilber-Deposition wieder deutlich niedriger und unterhalb des Immissionswertes.

Tabelle 2.13: Quecksilber in μg/(m²d) als Gesamtdeposition im Umfeld der BSL, Werk Schkopau

		Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	JMW
	1998									0,69	0,14	0,72	0,06	
SCK Ha 1	1999	0,43		0,63	0,22	0,05	0,13	0,15	0,05	0,39	0,03	0,05	1,25	0,30
SCK-Hg 1	2000	0,02	0,06	0,12	0,62	0,15	0,06	0,06	0,02	0,12	0,03	0,06	0,03	0,11
	2001	0,03	0,03	0,26	0,02	0,09	0,04	1,71	0,03	1,29	0,03	0,55	0,09	0,36
	1998									0,69	0,21	0,56	0,18	
SCK-Hg 2	1999	0,38		0,03	0,61	0,51	0,39	0,69	0,03	0,44	0,10	0,10	0,36	0,33
SCR-rig Z	2000	0,17	2,86	0,81	0,73	0,49	0,06	0,23	0,05	0,35	0,23	0,32	0,03	0,49
	2001	0,15	0,05	3,22	0,02	0,09	0,04	0,02	0,03	1,29	0,03	0,41	0,05	0,40
	1998									0,69	0,14	0,78	0,18	
SCK-Hg 3	1999	0,33		0,46	0,67	0,16	0,84	0,92	0,03	0,33	1,45	0,10	4,00	0,82
SCK-rig 5	2000	0,29	0,18	3,41	0,05	1,02	0,61	2,19	0,02	0,17	0,40	0,54	0,03	0,69
	2001	0,03	0,03	0,32	0,02	0,04	0,04	0,02	0,03	0,38	0,03	0,02	0,05	0,08
	1998									0,63	0,21	0,86	0,18	
SCK-Hg 4	1999	0,33		0,23	0,72	0,05	0,39	0,92	0,05	0,03	0,52	0,10	0,78	0,35
SCR-rig 4	2000	0,08	1,01	2,60	0,10	0,24	0,17	0,29	0,14	0,03	0,03	0,23	0,03	0,37
	2001	0,03	0,11	0,26	0,02	0,02	0,04	0,24	0,03	0,05	0,06	0,02	0,09	0,08
	1998									0,52	0,14	0,61	0,36	
SCK-Hg 5	1999	0,24		0,06	0,03	0,02	0,26	0,77	0,03	0,28	0,03	0,10	0,16	0,15
SCR-rig 5	2000	0,70	0,48	3,53	0,26	0,10	0,17	0,03	0,14	0,03	0,03	0,02	0,03	0,43
	2001	0,03	0,11	0,26	0,02	0,02	0,04	0,02	0,03	0,03	0,03	0,02	0,05	0,05
	1998									0,40	0,07	0,56	0,06	
SCK Hale	1999	0,19		0,03	0,03	0,12	0,06	0,77	0,16	0,39	0,05	0,10	0,16	0,17
SCK-Hg 6	2000	0,02	0,18	1,05	0,83	0,24	0,11	0,03	0,02	0,03	0,03	0,05	0,06	0,21
	2001	0,03	0,11	0,26	0,02	0,22	0,04	0,02	0,03	0,21	0,03	0,02	0,05	0,08

Messpunkte	
SCK-Hg 1	Korbetha, Dorfstr. 20, Garten
SCK-Hg 2	Korbetha, Dorfstr. 59, Garten
SCK-Hg 3	Schkopau, Hallesche Str., ehemalige Gärtnerei
SCK-Hg 4	Schkopau, Dörstewitzer Str. 13, Garten
SCK-Hg 5	Schkopau, LUhland-Str., LÜSA-Messstation
SCK-Hg 6	Schkopau, Am Lauchagrund, Philippine GmbH

Tabelle 2.14: Quecksilber in μ g/(m^2 d) als Gesamtdeposition im Umfeld der Altanlage Chlor I, Chemiepark Bitterfeld

		Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	JMW
	1999	0,13		0,10	0,03	0,14	0,13	0,72	0,03	0,06	1,45	0,15	0,05	0,26
BTF-Hg 7	2000	0,02	0,12	0,68	1,45	0,24	0,11	0,03	0,05	5,69	0,12	0,14	0,03	0,68
	2001	0,10	0,81	0,26	0,02	0,83	0,04		0,03	0,21	0,03	0,02	0,28	0,23
DTE Ua 0	1999	0,13		0,05	0,03	0,06	0,03	0,72	0,03	0,03	1,35	0,35	0,10	0,25
BTF-Hg 8	2000	0,02	0,12											
	1999							0,55	0,05	2,22	0,88	0,03	0,03	0,61*
BTF-Hg 9	2000	0,02	0,72	0,31	0,10	0,20	0,11	0,03	0,14	0,81	0,06	4,92	40,53	3,85
	2001	23,2	53,5	32,2	0,60	2,83	0,04	3,07	0,03	0,59	0,03	0,02	0,05	9,17
	1999							0,10	0,03	0,11	0,99	0,10	0,16	0,25*
BTF-Hg 10	2000	0,02	0,12	0,62	0,05	0,54	0,11	0,03	0,09	0,03	0,03	4,88	0,11	0,60
	2001	1,06	4,88	20,2	0,46	2,57	0,07	0,02	0,03	0,32	0,03	0,02	0,05	2,19
	1999							0,20	0,03	0,22	0,31	0,10	0,93	0,30*
BTF-Hg 11	2000	0,02	1,55	0,43	0,26	0,54	0,11	0,06	0,02	0,06	0,03	0,23	0,39	0,29
	2001		4,83	0,45	0,41	1,52	0,07	0,10	0,22	0,38	0,03	0,02	0,05	0,68
	1999							0,10	0,03	0,61	0,16	0,10	0,31	0,21*
BTF-Hg 12	2000	0,02	0,06	1,05	0,10	0,68	0,33	0,03	0,02	0,12	0,03	1,93	0,67	0,43
	2001	3,02	6,39	0,45	1,06	0,91	10,5	0,02	0,03	0,16	0,03	0,02	0,09	1,65
	1999							0,05	0,16	0,11	0,16	0,40	0,31	0,20*
BTF-Hg 13	2000	0,02	0,48	1,05	0,62	1,05	0,11	0,17	0,05	0,03	0,03	1,52	0,17	0,44
	2001	3,37	22,8	0,19	2,07	1,04	11,9	0,02	0,03	0,21	0,03	0,02	0,18	3,19

^{*} nur 2. Halbjahr

Messpunkte	
BTF-Hg 7	Bitterfeld, Am Kraftwerk 13, Garten
BTF-Hg 8	Bitterfeld, Am Kraftwerk 8, Garten
BTF-Hg 9	Bitterfeld, Chemiepark, W von Chlor I
BTF-Hg 10	Bitterfeld, Chemiepark, Glauberstr./Torbogenstr.
BTF-Hg 11	Bitterfeld, Chemiepark, NW-Rand der Kühlturmtasse Chlor I
BTF-Hg 12	Bitterfeld, Chemiepark, GrießheimstrGrafitstr.
BTF-Hg 13	Bitterfeld, Chemiepark, Akzo Nobel, südöstlich von Chlor I

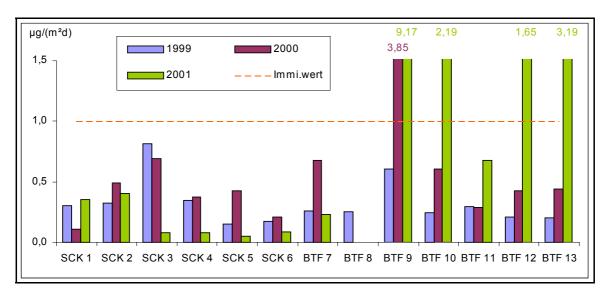


Abbildung 2.28: Quecksilber als Gesamtdeposition, Jahresmittel 1999 bis 2001 der Messungen in Schkopau (SCK) und in Bitterfeld (BTF) in μg/(m²d), (1 μg/(m²d) als Immissionswert des TA-Luft-Entwurfes)

2.4.3 Anionen und Kationen als Gesamtdeposition

Die Lage der Messstellen zur Bestimmung von Anionen und Kationen als Gesamt- sowie als Nassdeposition und der Dioxine/Furane (PCDD/F) sowie polychlorierter Biphenyle (PCB) als Gesamtdeposition sind aus Abbildung 2.29 ersichtlich.

Abbildung 2.29: Messstellen für Gesamt- und Nassdepositionen – Landesmessnetz 2001

Die in Tabelle 2.15 aufgeführten Depositionen von Anionen und Kationen, die als Gesamtdeposition an sechs **Bodendauerbeobachtungsflächen (BDF)** mit **Bergerhoff-Sammlern** gemessen wurden, weisen überwiegend relativ geringe territoriale Unterschiede auf. An der BDF bei Ladeburg fielen mehr als zwei Monatsproben aus, so dass der resultierende Mittelwert nicht als Jahresmittel gewertet werden kann.

Die Ergebnisse der Messungen des Staubniederschlags und der Gehalte einiger Elemente sind eher unauffällig.

Tabelle 2.15: Gesamtdepositionsmessungen mit Bergerhoff-Sammlern auf Bodendauerbeobachtungsflächen (BDF) 2001

Jahresmittel de	Jahresmittel der Anionen und Kationen in mg/(m²d)												
	1	nen		, ,	Kationen								
	Cl	F ⁻	NO ₃	SO ₄ ²⁻	NH ₄ ⁺	Na	+	< ⁺	Ca	a ²⁺	Mg ²⁺		
Miesterhorst	2,05	0,04	5,58	5,01	2,28	1,6	1 (,57	1	,50	0,36		
Ladeburg	[1,41]	[0,04]	[4,31]	[5,64]	[2,79]	[1,6	66] [6),53]	[1	,28]	[0,27]		
Lodersleben	0,98	0,04	4,56	3,88	2,72	0,8	9 (,49	0	,89	0,16		
Barnstädt	1,08	0,04	5,07	4,69	2,59	1,1	3 (,51	1	,84	0,21		
Lettewitz	1,09	0,04	3,83	3,65	2,07	0,7	'9 (0,25		,51	0,10		
Siptenfelde	1,15	0,05	5,30	4,28	3,87	1,0	9 (,64	0	,93	0,24		
Jahresmittel de	s Staubnie	ederschlag	es STN ii	n g/(m²d) i	und der Ele	emente in	μg/(m²c)					
	STN	Pb	Cd	Cr	Ni	As	Cu	Z	<u>Z</u> n	V	Mn		
Miesterhorst	0,04	4,4	0,1	0,7	4,0	0,5	5,5	4	5,4	0,9	9,2		
Ladeburg	[0,05]	[4,0]	[0,1]	[0,8]	[7,9]	[0,4]	[4,7]	[4	6,6]	[1,0]	[15,8]		
Lodersleben	0,05	4,7	0,0	0,8	5,0	0,3	4,8	5	5,4	0,6	12,3		
Barnstädt	0,09	4,8	0,0	0,9	3,0	0,3	5,5	6	0,8	0,9	20,4		
Lettewitz	0,05	4,2	0,1	0,6	2,8	0,2	4,1	4	3,2	0,5	8,8		
Siptenfelde	0,04	6,1	0,1	0,6	7,3	0,2	7,7	7	5,0	0,6	9,6		

[] < 10 Monatsproben

Die Ergebnisse der **Gesamtdepositionsmessungen mit Bergerhoff-Sammlern auf elf LÜSA-Messstationen** sind in Tabelle 2.21 im Anhang enthalten. Diese Standorte sind als Dauermessstellen angelegt und sollen mit den bekannten Einschränkungen als Grobscreening für Sachsen-Anhalt dienen. Anstelle der stillgelegten LÜSA-Messstationen Genthin und Merseburg wurde ab 2000 mit Gesamtdepositionsmessungen auf den LÜSA-Messstationen in Pouch, Stendal und Leuna begonnen. Es ist festzustellen, dass die langfristige und verbreitete Tendenz der Abnahme der Sulfatdeposition im Wesentlichen auch 2001 zu erkennen ist. Im Mittel lag die Verringerung bei 4 %. Dagegen sind die Depositionen im Mittel der vergleichbaren Messstellen beim Nitrat um 4 % und beim Chlorid um 12 % von 2000 zu 2001 angestiegen. Die deutlich niedrigeren Fluoridwerte müssen mit Vorbehalt bewertet werden, da sie sich in der Nähe der Bestimmungsgrenze des Messverfahrens bewegen. Bei den Kationen sind die Veränderungen der mittleren Depositionswerte gegenüber dem Vorjahr uneinheitlich. Die Messwerte für Staubniederschlag und die Anteile der Schwermetalle im Staubniederschlag sind in den Tabellen 2.19 und 2.20 im Anhang enthalten.

Die Jahresmittel der **Gesamtdepositionsmessungen mit Eigenbrodt-Sammlern** sind in Tabelle 2.16 aufgeführt.

Mit Ausnahme der Messstellen Halle-Ost und Piesteritz liegen alle Messstellen in niedrigbelasteten Regionen, meist von Wald umgeben. Hier soll langfristig der Eintrag von relevanten An- und Kationen über den Luftpfad in Ökosysteme gemessen werden. In der Auffangtechnik unterscheiden sich die Eigenbrodt-Sammler (Trichter-Flasche-Typ) wesentlich von den Bergerhoff-Sammlern (Topf-Typ). Wenngleich die mit beiden Sammlertypen gewonnenen Depositionswerte durchaus die gleiche Größenordnung aufweisen, ist zu berücksichtigen, dass insbesondere bei den Bergerhoff-Sammlern in Abhängigkeit von den Witterungsbedingungen mit Stoffumwandlungen bei Nitrit und Ammonium zu rechnen ist. Sie sind außerdem gegen den Eintrag von Blättern und Insekten ungeschützt, was zu Verfälschungen führen kann. Schließlich ist zu erwarten, dass die Wasseroberfläche in stärkerem Maße gasförmige Luftbestandteile, wie Schwefeldioxid, Stickstoffdioxid und Ammoniak, absorbiert als das bei den Eigenbrodt-Sammlern infolge der Engstelle des Flaschenhalses möglich ist.

Tabelle 2.16: Gesamtdepositionsmessungen mit Eigenbrodt-Sammlern, Jahresmittelwerte 1999 bis 2001 der Anionen und Kationen in mg/(m²d)

		Chlorid	Fluorid	Sulfat	Nitrit	Nitrat	sek. Phosphat	Ammonium	Natrium	Kalium	Calcium	Magnesium
Halle (Ost)	1999	1,03	0,02	4,08	0,08	4,19	0,05	1,87	0,57	0,19	1,90	0,16
	2000	0,99	0,03	4,23	0,09	4,15	0,17	1,78	0,58	0,30	2,05	0,17
	2001	1,42	0,04	3,43	0,20	4,49	0,14	1,76	0,48	0,63	1,41	0,15
Kapen-	1999	0,95	0,02	2,83	0,04	3,42	0,10	1,49	0,57	0,30	0,66	0,13
mühle	2000	0,97	0,02	3,05	0,05	3,74	0,08	1,56	0,51	0,38	0,79	0,16
	2001	1,27	0,03	3,26	0,05	4,34	0,28	1,96	0,64	0,87	0,72	0,17
Colbitz	1999	1,65	0,02	2,84	0,03	3,39	0,05	1,16	1,08	0,24	0,75	0,19
	2000	1,31	0,02	3,17	0,04	3,60	0,27	1,79	0,77	0,32	0,95	0,16
	2001	1,51	0,03	3,04	0,05	4,58	0,13	1,74	0,73	0,39	0,59	0,16
Zartau	1999	2,04	0,02	2,78	0,04	3,79	0,27	1,61	1,26	0,36	0,55	0,18
	2000	1,07	0,02	1,61	0,03	2,76	0,34	1,20	0,56	0,19	0,28	0,12
	2001	1,70	0,04	3,33	0,06	4,66	0,53	3,15	0,89	0,36	0,53	0,18
Rappbode-	1999	1,03	0,02	2,55	0,04	3,55	0,21	1,16	0,66	0,21	1,09	0,13
talsperre	2000	1,04	0,02	3,34	0,05	3,76	0,22	1,45	0,63	0,32	1,06	0,15
	2001	1,03	0,03	2,97	0,05	4,15	0,12	1,19	0,52	0,20	2,33	0,16
Drei- Annen-	2000	1,69	0,03	4,40	0,06	5,08	0,39	2,50	1,07	0,33	0,99	0,20
Hohe	2001	1,70	0,04	3,93	0,06	5,25	0,34	2,24	1,10	0,31	0,87	0,17
Piesteritz	2001	1,50	0,04	4,16	16,3	5,76	1,73	14,80	1,26	0,69	1,05	0,13
Thießen	2001	1,40	0,03	3,91	0,11	5,29	0,25	3,11	0,77	0,26	0,62	0,13

Beim Vergleich der für die acht Messstellen berechneten Jahresmittelwerte der An- und Kationen als Gesamtdeposition ist auffallend, dass die im unmittelbaren Einwirkungsbereich des Stickstoffwerkes Piesteritz gemessenen Depositionswerte von Ammonium und Nitrit die entsprechenden Jahresmittel der anderen Messstellen im Durchschnitt etwa um das Zehn- bzw. Hundertfünfzigfache übersteigen. Erhöhte Ammoniumwerte waren auch noch in Thießen (ca. 8 km nordöstlich von Piesteritz) und an der Waldmessstation Zartau bei Klötze zu verzeichnen. Im zwei- bzw. dreijährigen Vergleich sind die Jahresmittelwerte der Nitratdeposition an allen Messstellen angestiegen. Bei den anderen Anionen sind die Veränderungen uneinheitlich. Es muss bei der Bewertung der Ergebnisse berücksichtigt werden, dass die Depositionsmessungen wie auch andere Immissionsmessungen stark durch meteorologische Faktoren beeinflusst werden können. Darüber hinaus ist zu erwarten, dass ein eventueller Eintrag von Düngemitteln aus der Luft die Messergebnisse extrem ansteigen ließe, obwohl es sich dabei um eine extreme Art der Deposition handeln würde. Die Veränderungen der jahresdurchschnittlichen Depositionen an ausgewählten Anionen und Kationen von 1998 bis 2001 sind in Abbildung 2.30 dargestellt.

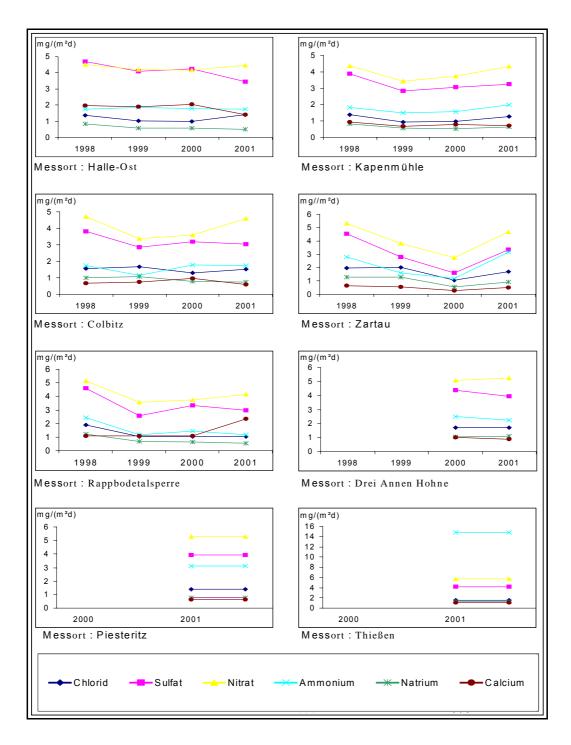


Abbildung 2.30: Gesamtdepositionsmessungen mit Eigenbrodt-Sammlern, Jahresvergleiche in mg/(m²d)

Die Ergebnisse der Messungen des Staubniederschlages und der Elemente an diesen acht Messstellen sind in den Tabellen 2.19 und 2.20 im Anhang enthalten. Sie zeigen keine Auffälligkeiten.

2.4.4 Anionen/Kationen als Nassdeposition

Wegen technischer Störungen fielen der Sammler in Halle-Ost von Anfang Januar bis Mitte Februar und von Mitte Juli bis Ende August 2001 und der Sammler in Halle-Dölau ebenfalls von Anfang Januar bis Mitte Februar und von Anfang April bis Mitte Mai 2001 aus. Es fehlen damit bei beiden Messstellen die Niederschlagswerte für jeweils drei Monate. Die in Tabelle 2.17 in Klammern gesetzten Werte stellen somit keine gemessenen Jahresmittelwerte, sondern Hochrechnungen für das Gesamtjahr 2001 dar und haben deshalb nur orientierende Bedeutung.

In den Abbildungen 2.1 und 2.2 im Anhang sind die Jahreseinträge der Messstelle Weißenfels von 1993 bis 2001 grafisch dargestellt. Man erkennt beim Sulfat deutliche und bei Chlorid schwache Verringerungen der Einträge in den letzten Jahren. Bei Ammonium und Nitrat sind geringe Anstiege zu verzeichnen. Die Tendenz der Kationen-Einträge ist eher uneinheitlich. Auffallend ist der stetige Anstieg des pH-Wertes seit 1994. Mit Ausnahme unerheblicher Verringerungen der Stoffeinträge von Chlorid, Sulfat und Calcium und kleiner Anstiege bei Ammonium und Nitrat sind im Jahr 2001 keine nennenswerten Veränderungen in der Bilanz der Stoffeinträge gegenüber 2000 festzustellen.

Tabelle 2.17: pH-Werte, Leitfähigkeiten und Stoffeinträge durch Nassdeposition 2001

	Halle	(Ost)	Halle-	Dölau	Weiß	enfels	
	kg/(ha·a)	mg/(m²d)	kg/(ha·a)	mg/(m²d)	kg/(ha·a)	mg/(m²d)	
Chlorid	[3,0]	[0,8]	[2,2]	[0,6]	2,8	0,8	
Sulfat	[7,4]	[2,0]	[6,0]	[1,6]	10,0	2,7	
Nitrit	[0,2]	[0,0]	[0,1]	[0,0]	0,2	0,1	
Nitrat	[9,3]	[2,6]	[7,4]	[2,0]	12,7	3,5	
sek. Phosphat	[0,2]	[0,1]	[0,3]	[0,1]	0,5	0,1	
Hydrogencarbonat	[2,7]	[0,7]	[2,2]	[0,6]	4,6	1,3	
Ammonium	[4,1]	[1,1]	[3,1]	[0,9]	6,0	1,7	
Natrium	[1,5]	[0,4]	[1,3]	[0,4]	1,4	0,4	
Kalium	[0,5]	[0,1]	[0,5]	[0,1]	0,8	0,2	
Calcium	[2,2]	[0,6]	[1,8]	[0,5]	2,7	0,7	
Magnesium	[0,3]	[0,1]	[0,3]	[0,1]	0,4	0,1	
Stickstoff	[5,4]	[1,5]	[4,2]	[1,1]	7,6	2,1	
Schwefel	[2,5]	[0,7]	[2,0]	[0,5]	3,3	0,9	
Leitfähigkeit in µS/cm	[18,1]		[15	5,9]	19,0		
pH - Wert	[5	,1]	[5	,2]	5,2		

^[] Ausfall des Sammlers von 3 Monaten

2.4.5 Dioxine und Furane als Gesamtdeposition

Beim Vergleich der Quartalswerte der PCDD/F- Depositionen, die als internationales Toxizitätsäquivalent I-TE zusammengefasst wurden, zeigen sich auch 2001 keine Regelmäßigkeiten bei den jahreszeitlichen Schwankungen (Abbildung 2.31).

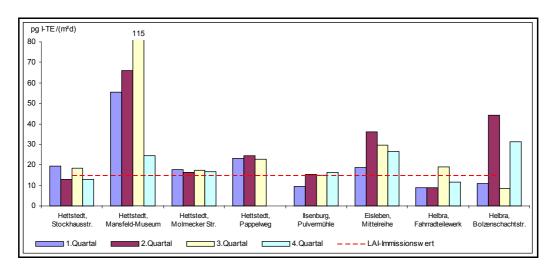


Abbildung 2.31: Quartalswerte 2001 der PCDD/F-Depositionen in pg I-TE/ (m²d)

Starke Schwankungen der Quartalswerte sind an den Messstellen Hettstedt (Mansfeld- Museum) und Helbra (Bolzenschachtstraße) zu verzeichnen. Die Jahresmittelwerte 2001 aller Messstellen, mit Ausnahme der Messstellen Helbra (Fahrradteilewerk) und Ilsenburg (Pulvermühle) überschreiten den vom LAI empfohlenen Immissionswert von 15 pg I-TE/(m²d). Dabei ist die Messstelle Hettstedt (Mansfeld-Museum) mit einem Jahresmittel von 65 pg/(m²d) nach wie vor am höchsten belastet. Gegenüber dem Vorjahr zeigt nur das Jahresmittel der Messstelle Hettstedt (Stockhausstraße) eine deutliche Veränderung, nämlich eine Senkung von 43 auf 16 pg/(m²d) (Abbildung 2.32).

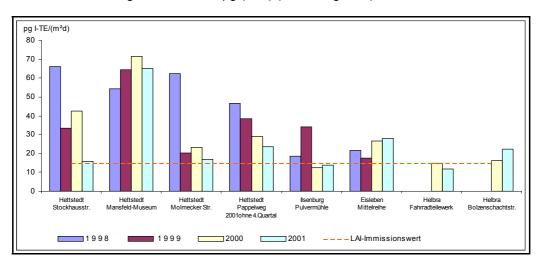


Abbildung 2.32: Jahresmittel 1998 bis 2001 der PCDD/F - Depositionen in pg I-TE/(m²d)

Beim Vergleich der Kongenerenverteilungen im Jahresdurchschnitt ist bei den Hettstedter und Eislebener Messstellen eine gewisse Homogenität festzustellen. Große Ähnlichkeit weisen auch die Kongenerenprofile der beiden Helbraer Messstellen untereinander auf. Sie unterscheiden sich jedoch im Jahre 2001 von den Hettstedter Profilen durch einen etwa halb so großen Anteil an 1,2,3,4,6,7,8,9-OCDF. Unterschiede weisen die Kongenerenprofile von Ilsenburg (Pulvermühle) im Vergleich zu den Profilen der anderen Messstellen auf (Abbildung 2.3 und 2.4 im Anhang). Die Kongenerenverteilungen der PCDD/F in den Quartalen (Tabelle 2.22 und 2.23 im Anhang) sind in den Abbildungen 2.5 und 2.6 im Anhang grafisch dargestellt. Jahreszeitliche Unterschiede sind an den einzelnen Messstellen wenig ausgeprägt.

Eine weitere Möglichkeit, Besonderheiten der PCDD/F-Anteile zu erkennen, bietet die Auswertung der Homologenverteilungen. Hier werden die Homologensummen unter Ausschluss der 2,3,7,8-substituierten Verbindungen gebildet und grafisch dargestellt (Abbildungen 2.7 und 2.8 im Anhang). Prinzipiell bestätigen die Homologenverteilungen die bereits durch die Kongenerenprofile festgestellten Standortunterschiede. An den zwei Messstellen in Helbra und an der Messstelle Ilsenburg wurden im Durchschnitt deutlich geringere Anteile an OCDF nachgewiesen als an den übrigen Messstellen.

2.4.6 Polychlorierte Biphenyle als Gesamtdeposition

Wie die PCDD/F sind die polychlorierten Biphenyle (PCB) schwerflüchtige organische Verbindungen, die häufig aus den gleichen Emissionsquellen in die Atmosphäre gelangen. Insbesondere Verbrennungsprozesse, an denen chlorhaltige Stoffe beteiligt sind, metallurgische Prozesse und Prozesse der Chlorchemie tragen zur Bildung bei. So lag es nahe, an den acht Messstellen für die Bestimmung der PCDD/F auch die PCB als Gesamtdeposition zu erfassen. Die PCB wurden dabei aus denselben Depositionsproben, aus denen auch die PCDD/F bestimmt wurden, analysiert.

In den Tabellen 2.24 und 2.25 im Anhang sind die Ergebnisse der Messstellen für die Quartale und das Jahr aufgelistet. Dabei wird für die einzelnen Kongenere die von der Internationalen Union für Reine und Angewandte Chemie (IUPAC) festgelegte Nummerierung verwendet. Von 209 verschiedenen Variationen wurden bisher etwa 130 Kongenere in der Umwelt nachgewiesen. Die in Tabelle 2.24 im Anhang unter den Nummern 28 bis 180 aufgeführten sechs PCB werden als sog. Leitkongenere oder auch als Ballschmiter-Kongenere bezeichnet, aus denen unter Vorbehalt auf die gesamte PCB-Menge geschlossen werden kann (Multiplikation mit dem Faktor 5).

Für die in Tabelle 2.25 im Anhang enthaltenen zwölf Kongeneren existieren in Analogie zu den PCDD/F unterschiedliche Toxizitätsäquivalenzfaktoren (TEF) (Tabelle 2.18), deren Anwendung zu Toxizitätsäquivalenten (TE) führt, die eine Bewertung ermöglichen.

Tabelle 2.18: Leitkongenere (Nr. 28 - 180) und dioxinähnliche PCB (Nr. 77-189) mit Toxizitätsäquivalenzfaktoren TEF nach WHO 1997

	IUPAC-Nr.	Struktur	TEF
	28	244' - TrCB	
ere	52	22'55' - TCB	
Leitkongenere	101	22'455' - PeCB	
kon	153	22'44'55' - HxCB	
Leit	138	22'344'5' - HxCB	
	180	22'344'55' - HpCB	
	77	33'44' - TCB	0,0001
	81	344'5 - TCB	0,0001
	105	233'44' - PeCB	0,0001
CB	114	2334'5 - PeCB	0,0005
Dioxinähnliche PCB	118	23'44'5 - PeCB	0,0001
lich	123	2'344'5 - PeCB	0,0001
ähn	126	33'44'5 - PeCB	0,1
xin	156	233'44'5 - HxCB	0,0005
ρi	157	233'44'5' - HxCB	0,0005
	167	23'44'55' - HxCB	0,00001
	169	33'44'55' - HxCB	0,01
	189	233'44'55' - HpCB	0,0001

WHO: World Health Organization

IUPAC: International Union of Pure and Applied Chemistry

Dieses Konzept der WHO besteht in der gesonderten toxikologischen Validierung von PCB, die ein TCDD-ähnliches toxisches Potential besitzen (dioxinähnliche PCB). Es sind dies in erster Linie non-ortho-(koplanare) aber auch mono-ortho- und zwei di-ortho-chlorsubstituierte Komponenten.

Dennoch stellen die Jahressummen der Toxizitätsäquivalente TE, die in Tabelle 2.25 im Anhang aufgeführt sind, einen praktikablen Bewertungsmaßstab bezüglich der toxikologischen Relevanz der dioxinähnlichen PCB dar. Die für die acht Messstellen berechneten TE-Jahresmittelwerte in pg/(m²d) sind mit den entsprechenden I-TE-Werten für PCDD/F in Tabelle 2.22 und 2.23 im Anhang zu vergleichen.

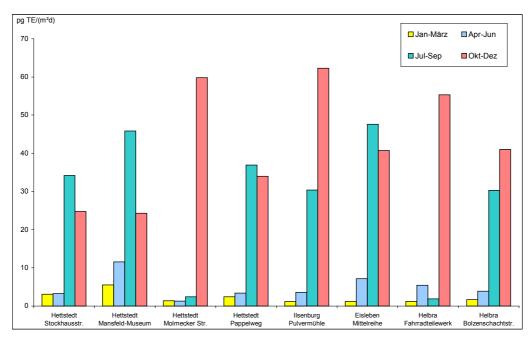


Abbildung 2.33: Quartalswerte 2001 der dioxinähnlichen PCB–Depositionen in pg TE /(m²d)

Bereits im Vorjahr wurden an den beiden Helbraer Messstellen im 1. und 4. Quartal (Winterhalbjahr) sehr hohe Quartalswerte (bis 40,3 pg TE/m²d) gemessen. Dieses Phänomen wiederholte sich im Jahr 2001 in anderer zeitlicher und örtlicher Verteilung: Waren im 1. Halbjahr noch überwiegend niedrige Quartalswerte zu verzeichnen, so erhöhten sich diese im 2. Halbjahr sprunghaft um ein Mehrfaches. An den Messstellen Helbra (Fahrradteilewerk) und Hettstedt (Molmecker Straße) bezieht sich der Anstieg allerdings nur auf das 4. Quartal (Abbildung 2.33).

Im Wesentlichen kommen die hohen TE- Werte durch den Anstieg des aus toxikologischer Sicht relevanten Kongeners Nr. 126 mit dem TE- Faktor 0,1 in den betreffenden Quartalen (Tabelle 2.25 im Anhang) zustande. Dies wird in der Kongenerenverteilung der dioxinähnlichen PCB der einzelnen Quartalsprofile sichtbar (Abbildung 2.9 und 2.10 im Anhang). Ähnliche Anstiege sind auch bei den Leitkongeneren im 2. Halbjahr 2001 zu erkennen (Tabelle 2.24 im Anhang). Nachdem die Probenahme und die Analytik auf Fehler überprüft wurden, ist eine einfache Erklärung dieses Phänomens nicht möglich, zumal es an allen Messstellen beobachtet wird und Abweichungen im 3. Quartal an zwei Messstellen vorliegen. Überdies ergeben die PCDD/F-Depositionen als I-TE gänzlich andere Quartalsprofile (Jahresgänge) (Abbildung 2.32).

Die gravierenden Anstiege im 2. Halbjahr führen für 2001 zwangsläufig zu Jahresmittelwerten der Deposition an dioxinähnlichen PCB, die gegenüber dem Vorjahr erheblich höher liegen (Abbildung 2.34). Es ist deshalb erforderlich, die Messungen fortzusetzen, um die Ursache für die unerwartete Zunahme der PCB- Deposition zu ermitteln.

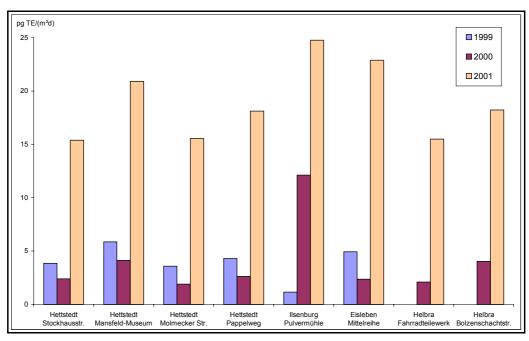


Abbildung 2.34: Jahresmittel 1999 bis 2001 der dioxinähnlichen PCB–Depositionen in pg TE /(m²d)

2.5 Messprogramm B91

2.5.1 Art der Messungen und Verteilung der Messpunkte

In Anbetracht der an der Verkehrsmessstation Halle, Riebeckplatz, im Jahr 2000 gemessenen 65 Überschreitungen des Konzentrationswertes für PM10 von 50 µg/m³ war auch im weiteren Verlauf der Merseburger Straße (B91) mit ähnlichen Belastungen zu rechnen, deren Abklärung nach der EU-Rahmenrichtlinie 96/62/EG erforderlich ist.

Das Sondermessprogramm sollte die bisherigen Immissionsmessungen hinsichtlich der Messorte/Messpunkte, des Messzeitraumes und der Analyten ergänzen bzw. fortsetzen. Dazu wurden das Immissionsmessfahrzeug mobil und weitere Probenahmegeräte stationär eingesetzt.

Die Lage der Messorte/Messpunkte sind in Tabelle 2.19 und 2.20 beschrieben.

Tabelle 2.19: Mobile Messpunkte

Messpunkte – Messwagen	MP-Nr.	Rechtswert	Hochwert	NN in m	Abstand zur Fahrbahn (horiz.) in m
Halle, Paracelsusstr. 23, LVA	1	4498834	5706688	123	4
Halle, Parkplatz nördlich des Riebeckplatzes	2	4499013	5705178	114	5
Halle, Merseburger Str. 65, Justizzentrum	3	4498986	5703703	122	4
Halle, Merseburger Str./ Bunastr.	4	4499003	5701556	115	4
Halle-Ammendorf, Merseburger Str. 443	5	4499078	5699069	97	2,5
Schkopau, Kulturhaus	6	4498392	5695674	110	3
Merseburg, Thomas-Müntzer-Ring 39	7	4498877	5690546	107	3
Merseburg, Thüringer Weg 14	8	4499625	5688825	105	6
Leuna, Spergauer Str./ Van't-Hoff-Str.	9	4501192	5687460	100	4
Spergau, Kötzschener Str. 10	10	4501591	5684461	104	0

Tabelle 2.20: Messorte für Probenahmegeräte

	Gerät	MP-Nr.	Rechtswert	Hochwert	NN in m	Abstand zur Fahrbahn (horiz.) in m
Halle, Merseburger Str. 371 Ammendorf, Fa. DLH	DHA-80	AMD	4499020	5700116	110	6
Halle, Merseburger Str. 196, Landesarbeitsamt	DPA-96	LAA	4498944	5702534	107	9
Schkopau, LUhland-Str., LÜSA- Messstation	LIS,GC855	SCK	4498880	5694680	95	100
Halle, Merseburger Str. 3, Landeseichamt	NUPS	EI	4498969	5704421	123	1
Halle, Merseburger Str. 415, Ammendorf	NUPS	AMD	4499005	5699431	110	3

Das Messfahrzeug sollte zu den mobilen Messungen möglichst entsprechend den Anforderungen der 23. BImSchV in unmittelbarer Nähe zur Fahrbahn positioniert werden. Prinzipiell wurden die Messorte für das Messfahrzeug auf die Ostseite, d. h. nach der Hauptwindrichtung leeseitig der in Nord-Süd-Richtung verlaufenden Straße gelegt. Es war dabei nicht beabsichtigt, allein Verkehrsabgase in Straßenschluchten zu messen, zumal typische schlecht durchlüftete Straßenschluchten im Untersuchungsbereich der B6 und der B91 kaum oder nur in kurzen Abschnitten vorhanden sind. Somit wurde an Stellen gemessen, die unterschiedlich weit (2,5 m bis 6 m) vom Fahrbahnrand entfernt lagen und auch unterschiedlich durchlüftet wurden. An den Messorten 9 und 10 (Leuna und Spergau) sollten vorrangig industrielle Immissionen gemessen werden.

Neben den herkömmlichen anorganischen Luftschadstoffen Schwefeldioxid, Stickstoffmonoxid, Stickstoffdioxid, Kohlenmonoxid und Ozon wurden an den 10 Messorten auch Proben zur Bestimmung der flüchtigen aromatischen Kohlenwasserstoffe Benzol, Toluol und Xylole gesammelt.

Die Messpunkte für die stationär zu betreibenden Probenahmegeräte mussten nach verschiedenen Kriterien, wie ungestörte Erfassung der Immissionen, Schutz der Geräte vor Beschädigung, Realisierbarkeit des Elektroanschlusses und Zugänglichkeit des Gerätes für die Wartung, ausgesucht werden. Zusätzlich wurden zwei netzunabhängige Probensammler NUPS (UMEG Karlsruhe) an straßennahen Lichtmasten in etwa 2,30 m Höhe installiert.

2.5.2 Zeitlicher Ablauf und Stichprobenverteilung

Das Messprogramm war nach der TA Luft vom 27.02.1986 für ein Jahr konzipiert worden. Mit dem Messfahrzeug waren mindestens 104 Stichprobenmessungen pro Messpunkt von 30 Minuten Dauer, die sich zufällig auf die Tageszeit 8 bis 16 Uhr, die Wochenarbeitstage und das Jahr verteilen, vorgesehen. Die Messtermine waren in einem Messplan für den gesamten Untersuchungszeitraum festgelegt. Sie ergaben sich aus dem Messbeginn um 08:00 Uhr ± 30 min an den jeweiligen Startpunkten und aus der Reihenfolge der Messungen. Die letzte der neun Messungen am Tag war um 15:30 Uhr ± 30 min zu beginnen. Die Zeittoleranzen waren nicht systematisch, sondern nur im Störungsfall zu nutzen

Mit Ausnahme des Messpunktes 3, Halle, Justizzentrum, Merseburger Straße, wo in der Zeit vom 16.05. bis 31.08.2001 infolge Bauarbeiten keine Messungen möglich waren, wurden an allen anderen Messpunkten 105 bzw. 107 Stichprobenmessungen in der Zeit vom 09.02.2001 bis 08.02.2002 durchgeführt. Am Messpunkt 3 konnte in der verbliebenen Zeit nur 72-mal gemessen werden.

Die drei Staubprobenahmegeräte wurden gleichzeitig an jedem 5. Tag betrieben, so dass eine gleichverteilte Stichprobe von 20 % der Gesamtheit resultierte.

2.5.3 Bewertung der Ergebnisse

Mobile Messungen von Schwefeldioxid, Stickstoffoxiden, Kohlenmonoxid und Ozon

Mit dem Messprogramm sollten die Immissionsverhältnisse an zwei stark befahrenen Bundesstraßen innerhalb und außerhalb der Stadt Halle/Saale sowie in Schkopau und Merseburg und abseits der B 91 in Leuna und Spergau bei industrieller Nachbarschaft untersucht werden. Da die mobilen Stichprobenmessungen nur werktags zur Helltageszeit (08 bis 16 Uhr) möglich waren, ist eine Bewertung

nach den gültigen Maßstäben (Kapitel 2.8) im engeren Sinne nicht möglich. Dennoch soll eine Beurteilung vorgenommen werden, die sich an den gültigen Immissionswerten orientiert.

In Tabelle 2.21 sind die real gemessenen und auf 8 Stunden bezogenen Immissionskenngrößen I1(8) und I2(8) nach TA Luft 1986 für die gasförmigen anorganischen Komponenten aufgelistet. Aus dem während des gleichen Zeitraums an der LÜSA-Verkehrsmessstation Halle/Verkehr am Riebeckplatz durch kontinuierliche Messungen ermittelten Jahreswerten für die Tageszeiten 0:00 bis 24:00 Uhr und 08:00 bis 16:00 Uhr wurden die mobil von 8 bis 16 Uhr gemessenen Jahresmittelwerte I1(8) auf den Gesamttag I1(24) berechnet. Dabei wurde vorausgesetzt, dass die am Riebeckplatz ermittelten Relationen aus Helltages- zu Gesamttageswerten näherungsweise auch auf die Stichprobenergebnisse der Helltageszeit angewandt werden können. Mit dieser Prämisse ist die Bewertung der auf diese Weise für die 10 mobilen Messpunkte berechneten Jahresmittel für das Untersuchungsjahr mit den Immissionswerten der gültigen Rechtsvorschriften möglich.

Erwartungsgemäß erreichen die berechneten Jahresmittel I1(24) für Schwefeldioxid an keiner Messstelle den in der TA Luft 2002 zum Schutz der menschlichen Gesundheit festgelegten Immissionswert von 50 μg/m³. Auch die Immissionsgrenzwerte der 1. EU-Tochterrichtlinie (Kapitel 2.8) werden nach den Hochrechnungen eingehalten. An der höchstbelasteten Messstelle 10 (Spergau) beträgt der I1(24)-Wert 15 μg/m³, der vermutlich wesentlich durch industrielle Emissionen verursacht wurde.

Noch niedriger liegen die I1(24)-Werte von CO im Verhältnis zum Immissionswert von 10 mg/m³. Eine Überschreitung des in der 2. EU-Tochterrichtlinie zum Schutz der menschlichen Gesundheit festgelegten Immissionsgrenzwertes als höchster Achtstundenmittelwert von 16 mg/m³ (gültig 2001) bzw. von 10 mg/m³ (gültig ab 2005) ist hier äußerst unwahrscheinlich. Letzterer wird an der höchstbelasteten Messstelle 7 (Merseburg, Thomas-Müntzer-Ring) nur zu 10 % erreicht.

Lediglich beim Stickstoffdioxid überschreiten die Hochrechnungen der Jahresmittelwerte I1(24) den ab dem 01.01.2010 gültigen Grenzwert von 40 μ g/m³ (1. EU-Tochterrichtlinie) an den Messpunkten 7 und 1 mit 52 bzw. 42 μ g/m³. Bei Berücksichtigung der Toleranzmarge ist für 2001 ein Immissionsgrenzwert von 58 μ g/m³ gültig, so dass die hochgerechneten Stickstoffdioxid-Jahresmittelwerte noch zulässig sind. An allen anderen mobilen Messpunkten sind nach den durchgeführten Hochrechnungen die gesetzlichen Forderungen eingehalten.

Das gleichfalls gemessene Ozon wird durch das verkehrsnahe Stickstoffmonoxid schnell abgebaut und ist deshalb bei Straßenmessungen von untergeordneter Bedeutung.

Tabelle 2.21: Messprogramm B91 – Jahresmittelwerte I1(8) und 98-Perzentile I2(8) der mobilen Messungen (8-16 Uhr) und der auf den Gesamttag berechnete Jahresmittelwerte I1(24), in μg/m³, CO in mg/m³.

Mess-		SO ₂			NO			NO ₂			СО		C)3
Punkt	I1(8)	I2(8)	I1(24)	I1(8)	12(8)	I1(24)	I1(8)	12(8)	I1(24)	I1(8)	12(8)	I1(24)	I 1(8)	12(8)
1	8,1	24	6,8	78	204	56	46	80	42	0,9	1,5	0,8	30	90
2	7,4	31	6,2	51	174	37	38	69	35	0,7	1,1	0,7	37	106
3	[7,0]	[21]	[5,9]	[36]	[132]	[26]	[36]	[66]	[33]	[0,8]	[1,5]	[0,7]	[30]	[86]
4	6,5	24	5,5	38	115	27	32	79	29	0,7	1,1	0,6	43	102
5	8,2	21	6,9	86	278	62	42	70	38	0,9	1,6	0,8	38	94
6	6,9	27	5,8	34	86	24	30	61	27	0,6	0,9	0,6	47	111
7	11,3	41	9,5	156	417	113	57	110	52	1,1	2,0	1,0	29	85
8	8,4	37	7,1	50	153	36	34	67	31	0,6	1,0	0,6	45	123
9	6,7	32	5,7	13	47	10	22	46	20	0,7	1,0	0,6	52	137
10	17,6	56	15	10	51	8	24	110	22	0,6	0,8	0,5	52	138

Werte ohne Messphase vom 16.05.2001 bis 31.08.2001 (Ausfall durch Baustelle: 35 Messtage von 107)

Mobile Messungen von leichtflüchtigen aromatischen Kohlenwasserstoffen (BETX)

Von dieser Stoffgruppe wurden neben Benzol, Toluol und den Xylolen auch Ethylbenzol, 4-Ethyltoluol und 1,2,4-Trimethylbenzol mit der gleichen Stichprobe wie die anorganischen Komponenten bestimmt. Die Ergebnisse sind weithin homogen. Auffallend sind jedoch erhöhte bis sehr hohe Konzentrationen, die am 19.09.2001 an vier von neun vermessenen Punkten auftraten. So wurde z.B. während der ersten Messung dieses Tages zwischen 08:00 und 8:30 Uhr am Messpunkt 4 (Halle, Bunastraße) Halbstunden-Maxima für Toluol von 158 μg/m³, für Benzol von 23 μg/m³, für m,p-Xylol von 113 μg/m³ und für o-Xylol von 30 μg/m³ gemessen. Es ist zu vermuten, dass diese hohen Immissionskonzentrationen nicht nur vom Kfz-Verkehr, sondern auch von anderen Emissionsquellen verursacht wurden, da der im Durchschnitt weniger verkehrsbelastete Messpunkt 6 (Schkopau, Kulturhaus) wesentlich höher

BTX-belastet war als der stark verkehrsbelastete Messpunkt 7 (Merseburg, Thomas-Müntzer-Ring). Die Dokumentation des Verlaufs dieser Episode ist infolge einer Störung des Gaschromatographen in der LÜSA-Verkehrsmessstation Halle nicht möglich.

In Tabelle 2.22 sind die Jahresmittelwerte I1(8) und die 98-Perzentile I2(8) der Helltagesmessungen sowie die berechneten Ganztages-Jahresmittel I1(24) aufgeführt. Für diese Berechnung wurden wieder die an der LÜSA-Verkehrsmessstation Riebeckplatz für die einzelnen Komponenten ermittelten Konzentrationsverhältnisse von Gesamttag zu Helltag zugrunde gelegt. Diese Verhältnisse schwanken zwischen den Komponenten nur wenig (0,91 bis 0,94).

Mit einem gültigen Immissionsgrenzwert können nur die Benzolwerte verglichen werden. Nach der 2. EU-Tochterrichtlinie beträgt der Benzol-Grenzwert 10 μ g/m³ einschließlich der 2001 gültigen Toleranzmarge. Alle Jahresmittel aus den berechneten Ganztageswerten liegen mit 1,0 bis 2,1 μ g/m³ deutlich unter dem Grenzwert plus Toleranzmarge. Am Messpunkt 7 (Merseburg, Thomas-Müntzer-Ring) wurde das höchste Jahresmittel gemessen.

Auch die vom LAI empfohlenen Zielwerte für Toluol und Xylole von je 30 μg/m³ werden weit unterschritten. Die höchsten Jahresmittel I1(24) wurden ebenfalls am Messpunkt 7 mit 5,0 bzw. 5,8 μg/m³ gemessen. Die höchste Belastung am Messpunkt 7 trifft auch auf das zusätzlich gemessene Ethylbenzol, 4-Ethyltoluol und 1,2,4-Trimethylbenzol zu.

Tabelle 2.22: Messprogramm B91 – Jahresmittelwerte I1(8) und 98-Perzentile I2(8) der mobilen Messungen (8-16 Uhr) und der auf den Gesamttag berechneten Jahresmittelwerte I1(24) in μg/m³

Mess- Punkt		Benzol		Toluol			E	Ethylbenze	ol	4-Ethy	ritoluol
1 dinkt	I1(8)	12(8)	I1(24)	I1(8)	12(8)	I1(24)	I1(8)	12(8)	I1(24)	I 1(8)	I 2(8)
1	1,9	4,5	1,7	5,0	18,0	4,6	1,3	5,4	1,3	0,5	1,8
2	1,4	3,3	1,2	3,5	10,4	3,3	1,0	2,7	0,9	0,4	1,2
3	[1,9]	[5,3]	[1,7]	[5,4]	[14,2]	[5,0]	[2,0]	[13,1]	[1,9]	[0,6]	[2,1]
4	1,5	3,7	1,4	4,7	7,9	4,3	1,2	2,3	1,2	0,5	1,0
5	1,8	4,4	1,6	4,3	10,2	4,0	1,2	2,8	1,1	0,5	1,3
6	1,1	3,3	1,0	3,9	10,6	3,6	0,9	2,2	0,8	0,4	1,1
7	2,3	5,1	2,1	5,4	11,0	5,0	1,7	4,5	1,6	0,7	2,6
8	1,2	3,6	1,1	2,8	9,0	2,6	0,7	2,0	0,7	0,3	1,1
9	1,3	4,4	1,2	4,2	10,0	3,9	1,3	7,0	1,3	0,5	2,4
10	1,8	11,7	1,7	2,6	8,1	2,4	0,7	1,8	0,7	0,3	0,9
Mess- Punkt	ı	m+p-Xylc	ol	o-Xylol		Xylole			1,2,4-Tri- methylbenzol		
	I1(8)	12(8)	I1(24)	I1(8)	12(8)	I1(24)	I1(8)	12(8)	I1(24)	I1(8)	12(8)
1	3,8	11,4	3,6	1,5	3,9	1,4	5,2	15,3	4,8	1,8	4,6
2	2,8	7,8	2,6	1,1	2,8	1,0	3,8	10,6	3,5	1,3	3,5
3	[5,8]	[36,1]	[5,4]	[1,9]	[8,1]	[1,8]	[8,0]	[44,2]	[7,0]	[2,1]	[6,8]
						L /-3	[0,0]	[, —]	L / - 3		
4	3,5	7,5	3,3	1,3	2,8	1,2	4,8	9,1	4,4	1,6	3,7
<u>4</u> 5	3,5 3,3	7,5 8,5	3,3 3,1								
				1,3	2,8	1,2	4,8	9,1	4,4	1,6	3,7
5	3,3	8,5	3,1	1,3 1,3	2,8 3,5	1,2 1,2	4,8 4,6	9,1 11,1	4,4 4,2	1,6 1,7	3,7 4,8
5 6	3,3 2,3	8,5 5,1	3,1 2,2	1,3 1,3 0,9	2,8 3,5 2,0	1,2 1,2 0,8	4,8 4,6 3,2	9,1 11,1 7,1	4,4 4,2 3,0	1,6 1,7 1,2	3,7 4,8 2,5
5 6 7	3,3 2,3 4,5	8,5 5,1 11,8	3,1 2,2 4,2	1,3 1,3 0,9 1,8	2,8 3,5 2,0 5,4	1,2 1,2 0,8 1,7	4,8 4,6 3,2 6,3	9,1 11,1 7,1 17,4	4,4 4,2 3,0 5,8	1,6 1,7 1,2 2,5	3,7 4,8 2,5 7,5

Werte ohne Messphase vom 16.05.2001 bis 31.08.2001 (Ausfall durch Baustelle: 35 Messtage von 107)

2.5.4 Stationäre Messungen von Partikel PM10, Schwebstaub (TSP) und Ruß

Die Ergebnisse dieser Messungen sind als Jahresmittelwerte in Abbildung 2.35 grafisch dargestellt. Zum Vergleich werden die im gleichen Zeitraum an der LÜSA-Messstation Halle/Verkehr, Riebeckplatz mit einem automatischen Partikel PM10-Messgerät (TEOM) gemessenen Jahresmittelwerte

der Partikel PM10-Konzentrationen aus der Gesamtheit und bei zeitgleicher Auswertung mit den Messungen an den drei Messpunkten aus der 5-Tages-Stichprobe gegenübergestellt. Es zeigt sich für die Messstation Halle/Verkehr, Riebeckplatz, dass das Jahresmittel aus der 5-Tages-Stichprobe (36 μ g/m³) vom Jahresmittel aus der Gesamtheit (34 μ g/m³) um rund 5 % abweicht. Es ist anzunehmen, dass die zeitliche Repräsentativität der an den drei anderen Messorten ermittelten Stichproben ähnlich ist.

Die so gemessenen PM10-Jahresmittelwerte können mit den gültigen Immissionsgrenzwerten der 1. EU-Tochterrichtlinie verglichen werden. Danach ist für das Jahr 2001 ein Jahresmittelwert einschließlich Toleranzmarge von 46,4 μ g/m³ einzuhalten (Grenzwert, ab dem 01.01.2005 einzuhalten: 40 μ g/m³). Dies ist an den beiden Messorten mit 21 μ g/m³ (Landesarbeitsamt) und 31 μ g/m³ (Ammendorf) erfüllt. Zu den Überschreitungen des Konzentrationswertes für den Grenzwert des Tagesmittelwertes (50 μ g/m³ mit 35 zulässigen Überschreitungen) kann auf Grund der Stichprobenmessungen keine Aussage getroffen werden.

Am Messort Schkopau konnte nur Gesamtschwebstaub gemessen werden. Infolge eines Geräteausfalls fehlen hier in der Zeit vom 19.11.2001 bis 08.01.2002 elf 24-Stundenwerte. Ohne diese Werte resultiert ein Jahresmittel von 27 µg/m³. Bei der Einbeziehung von geschätzten Werten, die aus Vergleichen mit den Messwerten der Messstelle Ammendorf berechnet wurden, ergibt sich ebenfalls ein Jahresmittel von 27 µg/m³.

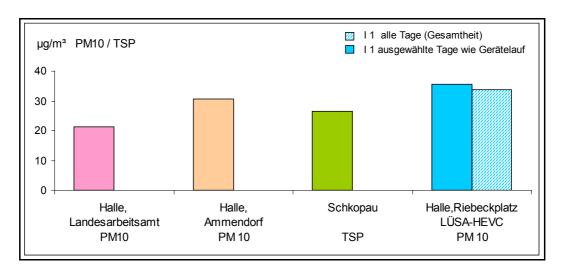


Abbildung 2.35: Messprogramm B91 – Vergleich der stationär gemessenen Jahresmittelwerte von Partikeln PM10 und TSP mit den Daten der LÜSA-Verkehrsmessstation Halle (HEVC) bei zeitgleicher Auswertung (5 Tages-Stichproben)

Ruß wurde aus den Filterproben der stationären Messungen von Partikel PM10 an den Messorten Landesarbeitsamt und Ammendorf bestimmt. Außerdem wurden mit Hilfe von NUPS an zwei weiteren Messpunkten im gleichen Straßenabschnitt Vier-Wochen-Mittelwerte gemessen. Die örtlichen Unterschiede der Rußkonzentrationen sind im Jahresdurchschnitt relativ gering (Abbildung 2.36). An der LÜSA-Messstation Halle/Verkehr am Riebeckplatz liegt das Jahresmittel (4,9 μ g/m³) bei zeitgleicher Mittelung um 1,8 μ g/m³ bzw. 1,9 μ g/m³ über den an beiden Messorten durch die Tagesstichproben gewonnenen Jahresmittelwerten und um 1,9 μ g/m³ bzw. 2,1 μ g/m³ über den Ergebnissen der NUPS-Messungen, die als zeitliche Gesamtheit gewonnen wurden.

An allen Messorten wird der Konzentrationswert von 8 μ g/m³ als Beurteilungswert für Dieselruß (23. BlmSchV) eingehalten. Allerdings wird der Zielwert von 1,5 μ g/m³ als weiterer Beurteilungswert (Krebsrisikostudie des LAI) durch die gemessenen Jahresmittel überschritten.

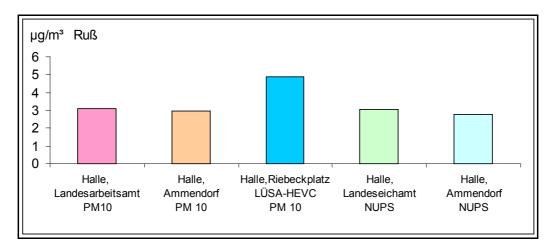


Abbildung 2.36: Messprogramm B91 – Vergleich der stationär gemessenen Jahresmittelwerte von Ruß mit den Daten der LÜSA-Verkehrsmessstation Halle (HEVC) bei zeitgleicher Auswertung (5-Tages-Stichproben)

Weitere Ergebnisse dieser Untersuchungen werden in einem gesonderten Bericht veröffentlicht.

2.6 Beurteilung der Immissionen nach den EU-Tochterrichtlinien

Im Folgenden werden die Immissionen im Land Sachsen-Anhalt anhand von Ergebnissen der LÜSA-Messungen und des Messprogramms B91 bewertet.

Für Sachsen-Anhalt wurde auf der Basis der Messergebnisse des Jahres 1999 eine Ausgangsbeurteilung angefertigt.

Die EU-Richtlinien schreiben zum einen Grenzwerte vor, deren Überschreitungen Maßnahmen zur Verringerung der Immissionen nach sich ziehen (s. Kapitel 2.8). Zum anderen sind für die Wahl der Methoden, die zur Beurteilung der Luftqualität eingesetzt werden können (Messungen, Modellrechnungen, objektive Schätzungen oder Kombinationen dieser Möglichkeiten), sogenannte obere und untere Beurteilungsschwellen maßgebend.

Die 1. EU-Tochterrichtlinie (Richtlinie 1999/30/EG) schreibt Grenzwerte für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide sowie Partikel und Blei in der Luft vor.

Überschreitungen des ab 01.01.2010 geltenden Grenzwertes (Einstundenmittelwert 200 $\mu g/m^3$) für **Stickstoffdioxid** wurden im Jahr 2001 nicht registriert. Die obere Beurteilungsschwelle (140 $\mu g/m^3$) wurde an der LÜSA-Messstation Halle/Verkehr einmal überschritten. 18 Überschreitungen sind zulässig. Die untere Beurteilungsschwelle (100 $\mu g/m^3$) wurde an fünf Messstationen überschritten, die in der Tabelle 2.23 eingetragen sind. Auch hier sind 18 Überschreitungen zulässig.

Tabelle 2.23: Überschreitungen der unteren Beurteilungsschwelle Stickstoffdioxid (100 μg/m³) Einstundenmittelwert im Jahr 2001

Messstelle	Anzahl der Überschreitungen
Aschersleben	12
Dessau/Albrechtsplatz	(2)
Halle/Verkehr	17
Magdeburg/Verkehr	16
Wittenberg/Verkehr	18

Bezüglich des ab 01.01.2010 geltenden Grenzwertes für den Jahresmittelwert (40 μ g/m³) wurde im Jahr 2001 eine Überschreitung im LÜSA festgestellt. Dies betrifft die Messstation Magdeburg/Verkehr. Im Rahmen des Messprogramms B91 wurden aus den Stichprobenmessungen Jahresmittelwerte für die Stickstoffdioxid-Konzentrationen abgeschätzt. Hierbei überschritten die Mittelwerte an zwei Messstellen den Grenzwert für das Jahr 2010. An der Messstelle 7 Merseburg, Thomas-Müntzer-Ring wurden 52 μ g/m³ abgeschätzt, an der Messstelle 1 Halle, Paracelsusstraße 42 μ g/m³ (Tabelle 2.24).

Für das Jahr 2001 ist eine Toleranzmarge gültig. Überschreitet der Jahresmittelwert die Summe aus Grenzwert und Toleranzmarge (58 $\mu g/m^3$) nicht, so sind keine Maßnahmen zur Reduzierung der Schadstoffbelastung gefordert.

Überschreitungen der oberen Beurteilungsschwelle (32 µg/m³) wurden an drei weiteren Messstationen im LÜSA registriert (Tabelle 2.25). Weiterhin überschritten drei Jahresmittelwerte im B91-Messprogramm (abgeschätzt aus den Stichprobenmessungen) die obere Beurteilungsschwelle (Tabelle 2.25). Dies betraf die Messstelle 2 (Halle, nördlich des Riebeckplatzes), Messstelle 3 (Halle, Merseburger Straße) und Messstelle 5 (Halle Ammendorf, Merseburger Straße).

Tabelle 2.24: Überschreitungen des ab 1.1.2010 geltenden Grenzwertes für Stickstoffdioxid (40 μg/m³) durch Jahresmittelwerte im Jahr 2001

Messstelle	Jahresmittelwert in µg/m³
Magdeburg/Verkehr	41
Merseburg, Thomas-Müntzer-Ring 39	52 ¹⁾
Halle, Paracelsusstraße 23	42 ¹⁾

^{1) ...} aus Stichprobenmessungen abgeschätzt

Tabelle 2.25: Überschreitungen der oberen Beurteilungsschwelle Stickstoffdioxid (32 μg/m³) Jahresmittelwert im Jahr 2001

Messstelle	Jahresmittelwert in µg/m³
Aschersleben	36
Halle/Verkehr	34
Wittenberg/Verkehr	33
Halle Ammendorf, Merseburger Str. 443	38 ¹⁾
Halle, nördlich Riebeckplatz	35 ¹⁾
Halle, Merseburger Straße 65	(33) 1)

^{1) ...} aus Stichprobenmessungen abgeschätzt

Die untere Beurteilungsschwelle (26 μ g/m³) wurde an drei weiteren LÜSA-Messstationen und an drei Messpunkten des Messprogramms B91 (aus Stichproben abgeschätzte Jahresmittelwerte) überschritten (s. Tabelle 2.26).

Tabelle 2.26: Überschreitungen der unteren Beurteilungsschwelle Stickstoffdioxid (26 μg/m³) Jahresmittelwert im Jahr 2001

Messstelle	Jahresmittelwert in µg/m³
Dessau/Albrechtsplatz	(29)
Sangerhausen/Mühlgasse	(32)
Weißenfels/Verkehr	33
Halle, Merseburger Straße/Bunastraße	29 ¹⁾
Schkopau, Kulturhaus	27 ¹⁾
Merseburg, Thüringer Weg	31 ¹⁾

^{1) ...} aus Stichprobenmessungen abgeschätzt

Bei den **Schwefeldioxid**-Konzentrationen wurden im Jahr 2000 keine Überschreitungen der Grenzwerte oder oberen bzw. unteren Beurteilungsschwellen im Rahmen des LÜSA bzw. im Rahmen des Messprogramms B91 festgestellt. Diese Aussage gilt auch für die **Blei**-Konzentrationen in Sachsen-Anhalt.

Der Grenzwert für den Tagesmittelwert der **Partikel PM10**-Konzentrationen beträgt 50 μ g/m³ bei 35 zulässigen Überschreitungen (gültig ab dem 1.1.2005). An den Messstationen Aschersleben, Halle/Verkehr und Wittenberg/Verkehr war dieser Wert im Jahr 2001 mehr als 35-mal überschritten. Zudem wurde an der Messstation Aschersleben die Summe aus Grenzwert und Toleranzmarge für das Jahr 2001 (70 μ g/m³) 38-mal überschritten.

Im Rahmen des B91-Messprogrammes kann zu den Überschreitungshäufigkeiten keine Aussage getroffen werden, da es sich um Stichproben handelte.

^{() ...} weniger als 90 % der Einzelwerte verfügbar

^{() ...} weniger als 90 % der Einzelwerte verfügbar

Die obere Beurteilungsschwelle (30 μg/m³) wurde an allen Messstationen des LÜSA in 2001 überschreitungshäufigkeit betrug in Harzgerode elf. Sieben Überschreitungen pro Jahr sind zulässig.

Beim Jahresmittelwert der Partikel PM10-Konzentrationen war nur an einer Messstation im Jahr 2001 die obere Beurteilungsschwelle nicht überschritten (14 µg/m³). Auch im Rahmen des B91-Messporgrammes überschritten die Jahresmittelwerte an den stationären Messstellen die obere Beurteilungsschwelle.

Der Grenzwert von 40 $\mu g/m^3$, der ab dem Jahr 2005 eingehalten werden muss, wurde im Jahr 2001 an der Messstation Aschersleben (46 $\mu g/m^3$) überschritten. Für das Jahr 2001 gibt es eine Toleranzmarge von 6,4 $\mu g/m^3$. Bei Einhaltung der Summe aus Grenzwert und Toleranzmarge (46,4 $\mu g/m^3$) sind noch keine Luftreinhaltemaßnahmen einzuleiten.

Die 2. EU-Tochterrichtlinie (2000/69/EG) legt Grenzwerte für Benzol und Kohlenmonoxid fest.

Die Messergebnisse der LÜSA-Messstationen für das **Kohlenmonoxid** ergaben im Jahr 2001 keinerlei Überschreitungen des ab dem 01.01.2005 einzuhaltenden Grenzwertes oder der Beurteilungsschwellen. Auch im B91-Messprogramm wurden keine Überschreitungen des Grenzwertes für die Kohlenmonoxid-Konzentrationen registriert.

Beim **Benzol** wurden in 2001 die obere Beurteilungsschwelle und der ab dem 01.01.2010 einzuhaltende Grenzwert an den LÜSA-Messstationen nicht überschritten. Die Jahresmittelwerte an den Verkehrsmessstationen Magdeburg/Verkehr, Wittenberg/Verkehr, Halle/Verkehr, Weißenfels/Verkehr und Aschersleben überschritten die untere Beurteilungsschwelle von 2 µg/m³. Im Rahmen des B91-Messprogramms überschritt ein aus den Stichprobenabgeschätzter Jahresmittelwert in Merseburg, Thomas-Müntzer-Ring die untere Beurteilungsschwelle.

Darüber hinaus ist am 12. Februar 2002 eine 3. EU-Tochterrichtlinie über den **Ozon**gehalt der Luft verabschiedet worden. Hier werden Zielwerte, die möglichst bis zum Jahre 2010 eingehalten werden sollen, und sogenannte Langfristzielwerte genannt.

Der Zielwert zum Schutz der menschlichen Gesundheit (120 μ g/m³ als gleitender Achtstundenmittelwert) wurde im Jahr 2001 an den beiden LÜSA-Messstationen Brocken und Harzgerode an mehr als den zulässigen 25 Tagen überschritten. Der Langfristzielwert (keine Überschreitung der 120 μ g/m³ als gleitender Achtstundenmittelwert) wurde dagegen in 2001 nur an einer Verkehrsmessstation (Magdeburg/Verkehr) eingehalten.

Zum Schutz der Vegetation wurde ein sogenannter AOT40-Wert definiert (vgl. Kapitel 2.8). Der Zielwert dieser Größe wurde in 2001 nur an der Brockenstation überschritten, der Langfristzielwert dagegen an allen betrachteten Messstationen, die für die Belastung der Vegetation durch Ozon repräsentativ sind.

2.7 Aktuelle Informationen zur Luftqualität in Sachsen-Anhalt

Mit dem immissionsschutzrechtlichen Vollzug gemäß den Anforderungen der Luftqualitäts-Rahmenrichtlinie (96/62/EG) und der Tochterrichtlinien steigen wesentlich die Anforderungen, die das LÜSA als komplexes und integriertes Mess- und Informationssystem zu erfüllen hat. Das LÜSA hat dabei erhöhte Anforderungen nach einer zeitnahen (stündlichen), allgemeinverständlichen und aktiven Information der Öffentlichkeit sowie der relevanten Organisationen wie Umweltschutzverbände, Interessengruppen gefährdeter Personengruppen und andere Stellen, die mit dem Gesundheitsschutz befasst sind, zu erfüllen. So werden verschiedenste Wege für Datenpublikationen genutzt. Neben den klassischen Medien wie der Tagespresse, in der einmal täglich Daten zur aktuellen Luftbelastung veröffentlicht werden, gewinnen nun die elektronischen Medien immer mehr an Bedeutung, da dort eine zeitnahe Information gewährleistet werden kann. So wurde insbesondere das Intranet- und Internet-Angebot aus dem LÜSA weiter ausgebaut und beinhaltet jetzt alle Daten, die als Mindestinformationen in der 1. EU-Tochterrichtlinie gefordert sind (aktuelle Stundenmittelwerte, Tagesmittelwerte, Maximalwerte). Außerdem werden für alle LÜSA-Stationen die Monats- und Jahreswerte der zurückliegenden vier Jahre angeboten, so dass eine Einschätzung der Entwicklung der Luftgualität möglich ist. Ein weiterer großer Schritt war die Konzeption und Implementierung eines online-Monatsberichtes. In dieser Form können jetzt die monatlichen Informationen zur Luftqualität in Sachsen-Anhalt wesentlich schneller bereitgestellt werden. Die Adressen des LÜSA-Angebotes lauten:

<u>http://www.mu.sachsen-anhalt.de/lau/luesa</u> im Internet und <u>http://www.lauam.mu.lsa-net.de</u> im Intranet des Landes Sachsen-Anhalt.

Neben dem Angebot des Landesamtes für Umweltschutz wurde im Jahr 2001 das bundesweite Informationsangebot des Umweltbundesamtes weiter ausgebaut. Hier werden bundesweite Informationen

zur aktuellen Luftqualität und Links zu den einzelnen Landesmessnetzen angeboten. Die Adresse lautet: http://www.umweltbundesamt.de.

Des Weiteren wird derzeit eine automatisierte Datenbereitstellung im Videotext des MDR (Tafel 522) realisiert, die nach ihrer Fertigstellung ebenfalls eine stündliche Datenveröffentlichung und die Mindestinformationen der 1. EU-Tochterrichtlinie ermöglichen wird. Weitere Datenveröffentlichungen erfolgen auf Anzeigetafeln in Magdeburg sowie über das Bürgertelefon, das vom LAU betrieben wird (01803 240 340).

2.8 Bewertungsmaßstäbe

(22. BlmSchV).

Um Menschen, Tiere, Pflanzen, den Boden, das Wasser, die Atmosphäre sowie Kultur- und sonstige Sachgüter vor schädlichen Umwelteinwirkungen zu schützen und um weiteren Anforderungen von Rechtsvorschriften genügen zu können, wurden zahlreiche Bewertungsmaßstäbe aufgestellt. Diese haben eine sehr unterschiedliche Verbindlichkeit, die sich von Festlegungen in Rechtsvorschriften bis hin zu Empfehlungen (Erkenntnisquelle) erstreckt. Als Rechtsvorschriften stehen das Bundes-Immissionsschutzgesetz (BImSchG) und die entsprechenden Durchführungsverordnungen (BImSchV) zur Verfügung. Große Bedeutung besitzt nach wie vor als Erste Allgemeine Verwaltungsvorschrift die Technische Anleitung zur Reinhaltung der Luft (TA Luft). Abgesehen von den Immissionswerten der TA Luft sind die Bewertungsmaßstäbe auf konkrete Orte bezogen ("Punktbezug"). Zu jedem Bewertungsmaßstab für gasförmige Schadstoffkomponenten, der in Masse pro Volumen angegeben wird, ist eine eindeutige Zuordnung der Bezugsbedingungen Temperatur und Druck erforderlich. Sofern in den Vorschriften keine solchen Bedingungen genannt sind, wird üblicherweise von einer Temperatur von 0 °C und einem Druck von 101,3 kPa ausgegangen. Generell ist zu beachten, dass mit Bewertungsmaßstäben immer nur die zugehörigen Luftqualitätsmerkmale (Immissionskenngrößen), z.B. arithmetische Mittelwerte oder Mediane über vorgegebene Zeitabschnitte, in Beziehung gesetzt werden. Gegenwärtig werden die Bewertungsmaßstäbe der EU-Richtlinien 1999/30/EG (1. Tochterrichtlinie), 2000/69/EG (2. Tochterrichtlinie) und 2002/3/EG (3. Tochterrichtlinie) in deutsches Recht umgesetzt.

Im Folgenden sind die wesentlichen Maßstäbe, weitgehend in Tabellenform, zusammengestellt. Darüber hinaus wird in den einzelnen Abschnitten des Berichtes auf spezielle Bewertungen (z.B. für Gerüche) eingegangen.

Sie finden Eingang in eine neue 22. Verordnung zum Bundes-Immissionsschutzgesetz

Bewertungsmaßstäbe des BlmSchG und der 22. BlmSchV vom 26.10.1993

Nach § 48a BlmSchG kann die Bundesregierung zur Erfüllung von bindenden Beschlüssen der Europäischen Gemeinschaften Rechtsverordnungen über die Festsetzung von Immissionswerten erlassen. Bisher ist das bereits durch die Verordnung über Immissionswerte - 22. BlmSchV – vom 26.10.1993, geändert am 27.5.1994, geschehen. Die hier festgelegten Grenzwerte (Immissionswerte) besitzen rechtsverbindlichen Charakter, sie "... dürfen zum Schutz vor schädlichen Umwelteinwirkungen nicht überschritten werden".

In der Tabelle 2.27 sind die Immissionswerte für Schwefeldioxid (SO_2), Schwebstaub, Blei und Stickstoffdioxid (NO_2) und in der Tabelle 2.28 die Schwellenwerte für Ozon (O_3) aufgeführt.

Tabelle 2.27: Immissionswerte der 22. BlmSchV für Schwefeldioxid, Schwebstaub, Blei und Stickstoffdioxid

Schadstoff	Wert	Dimensi- on	Luftqualitätsmerk- mal/Art des Bewer- tungsmaßstabes	Bezugszeitraum	Nebenbedingungen
Schwefeldioxid	80	μg/m³ ³⁾	Median der Tagesmittelwerte	Jahr (1.431.3.)	Schwebstaub: Median > 150 μg/m³
	120	μg/m ^{3 3)}	Median der Tagesmittelwerte	Jahr (1.4-31.3.)	Schwebstaub: Median ≤ 150 µg/m³
	130	μg/m³ ³⁾	Median der Tagesmittelwerte	Winter (1.1031.3.)	Schwebstaub: Median > 200 µg/m³
	180	μg/m³	Median der Tagesmittelwerte	Winter (1.1031.3.)	Schwebstaub: Median ≤ 200 µg/m³
	250 ¹⁾	µg/m³ ³⁾	98-Perzentil der Tagesmittelwerte	Jahr (1.431.3.)	Schwebstaub: 98-Perzentil > 350 µg/m³
	350 ¹⁾	μg/m³ ³⁾	98-Perzentil der Tagesmittelwerte	Jahr (1.431.3.)	Schwebstaub: 98-Perzentil ≤ 350 µg/m³
Schwebstaub	150	μg/m³	Arithmet. Jahres- mittelwert	Jahr (1.431.3.)	
	300	μg/m³	95-Perzentil der Tagesmittelwerte	Jahr (1.431.3.)	
Blei	2	μg/m³	Jahresmittelwert	Jahr (1.131.12.)	
Stickstoffdioxid	200	μg/m³ ²⁾	98-Perzentil der Stundenmittel- werte	Jahr (1.131.12.)	

Schutzgut: Mensch und Umwelt

Tabelle 2.28: Schwellenwerte der 22. BlmSchV für Ozon

Wert	Dimension	Luftqualitätsmerk- mal/Art des Bewer- tungsmaßstabes	Bezugszeitraum	Schutzgut	Folgen bei Überschrei- tung
110	µg/m³ ¹⁾	8-Stunden-Mittelwert	0.00-8.00, 8.00-16.00, 12.00-20.00 und 16.00- 24.00	Mensch	
200 65	μg/m³ ¹⁾ μg/m³ ¹⁾	Stundenmittelwert Tagesmittelwert	Jahr	Vegetation	
180	μg/m³ ¹⁾	Stundenmittelwert	Jahr	Mensch (empfindliche Bevölkerungs- gruppen)	Unterrichtung der Bevölke- rung
360	μg/m³ ¹⁾	Stundenmittelwert	Jahr	Mensch (Gefahr für menschliche Gesundheit)	Auslösung des Warn- systems

^{1) ...} bezogen auf 293 K und 101,3 kPa

Prüfwerte (Konzentrationswerte) der 23. BImSchV

Konzentrationswerte, bei deren Überschreiten verkehrsbeschränkende Maßnahmen zu prüfen sind, sind in der 23. BlmSchV festgelegt. Berücksichtigt werden Schadstoffe, als deren Verursacher in erster Linie der Kraftfahrzeugverkehr angenommen wird. Dies sind Stickstoffdioxid (NO₂), Ruß und Benzol (Tabelle 2.29).

Die Konzentrationswerte dienen als Entscheidungshilfen bei der Planung und Durchführung von Maßnahmen, mit denen eine Reduzierung der verkehrsbedingten Schadstoffbelastung in bestimmten, räumlich eng begrenzten Gebieten erreicht werden soll.

 ^{...} zusätzliche Maßnahmen bei Überschreitung von 250 μg/m³ bzw. 350 μg/m³ an mehr als 3 aufeinander folgenden Tagen, um zukünftig Überschreitungen dieser Werte zu verhindern

^{2) ...} bezogen auf 293 K und 101,3 kPa

^{3) ...} bezogen auf 25 °C und 100 kPa

Tabelle 2.29: Konzentrationswerte der 23. BlmSchV für Stickstoffdioxid, Ruß und Benzol

Schadstoff	Wert	Dimension	Luftqualitätsmerkmal/Art des Bewertungs- maßstabes	Bezugszeitraum
Stickstoffdioxid	160	μg/m³	98-Perzentil der 1/2-Stundenmittelwerte	Jahr
Ruß	8	μg/m³	Arithmetischer Jahresmittelwert	Jahr
Benzol	10	μg/m³	Arithmetischer Jahresmittelwert	Jahr

Grenzwerte (Immissionswerte) der TA Luft 86

In dieser Ersten Allgemeinen Verwaltungsvorschrift vom 27.2.1986 ist festgelegt, dass die Grenzwerte (Immissionswerte) nur in Verbindung mit den dort angegebenen Ermittlungsverfahren der Immissionsbelastung gelten. Daraus resultiert u.a. der Bezug auf Beurteilungsflächen. In der Verwaltungspraxis aller Bundesländer wird jedoch die Anwendung erweitert. So werden die Grenzwerte (Immissionswerte IW1 und IW2) auch zur Bewertung von solchen Immissionen herangezogen, die nicht im Zusammenhang mit genehmigungsbedürftigen Anlagen stehen. Weiterhin werden Immissionen punktbezogen zur Bildung von Immissionskenngrößen (I1 und I2) und damit zum Vergleich mit den Immissionswerten verwendet. Das LAU schließt sich dieser Vorgehensweise an.

In Tabelle 2.30 sind Immissionswerte zum Schutz vor Gesundheitsgefahren und in Tabelle 2.31 Immissionswerte zum Schutz vor erheblichen Nachteilen und Belästigungen zusammengestellt.

Tabelle 2.30: Immissionswerte zum Schutz vor Gesundheitsgefahren - Nr. 2.5.1 TA Luft 86

Schadstoff	W	Wert		
	IW1	IW2		
Schwebstaub	0,15	0,30	mg/m³	
Blei und anorganische Bleiverbindungen	2,0	-	μg/m³	
Cadmium und anorga- nische Cadmiumverbin- dungen	0,04	-	µg/m³	
Chlor	0,10	0,30	mg/m³	
Chlorwasserstoff	0,10	0,20	mg/m³	
Kohlenmonoxid	10	30	mg/m³	
Schwefeldioxid	0,14	0,40	mg/m³	
Stickstoffdioxid	0,08	0,20	mg/m³	

Bezugszeitraum: Jahr

Luftqualitätsmerkmal/Art des Bewertungsmaßstabes:

IW1: arithmetischer Mittelwert

IW2: - 98-Perzentil der Halbstundenmittelwerte (Chlor, Chlorwasserstoff, Kohlenmonoxid, Schwefeldi-

oxid, Stickstoffdioxid)

- 98-Perzentil der Tagesmittelwerte (Schwebstaub)

Schutzgut: Mensch

Tabelle 2.31: Immissionswerte zum Schutz vor erheblichen Nachteilen und Belästigungen - Nr. 2.5.2 TA Luft 86

	W	Dimension	
	IW1	IW2	
Staubniederschlag	0,35	0,65	g/(m²d)
Blei und anorganische Bleiverbindungen	0,25	-	mg/(m²d)
Cadmium und anorga- nische Cadmiumverbin- dungen	5	-	μg/(m²d)
Thallium und anorgani- sche Thalliumverbin- dungen	10	-	μg/(m²d)
Fluorwasserstoff und anorganische Fluorverbindungen	1,0	3,0	μg/m³

Bezugszeitraum: Jahr

Luftqualitätsmerkmal/Art des Bewertungsmaßstabes:

IW1: arithmetischer Mittelwert, IW2: 98-Perzentil der Halbstundenmittelwerte (Fluor)

- Maximaler Monatsmittelwert (Staubniederschlag)

Schutzgut: Mensch u.a. Schutzgüter

Derzeit befindet sich eine Neufassung der TA Luft im Gesetzgebungsverfahren. Darin sind folgende Immissionswerte festgelegt:

Tabelle 2.32 Immissionswerte für Stoffe zum Schutz der menschlichen Gesundheit – Nr. 4.2.1 TA Luft 2002

Stoff/Stoffgruppe	Konzentration μg/m³	Mittelungszeitraum	Zulässige Überschrei- tungshäufigkeit im Jahr
Schwefeldioxid	50	Jahr	-
	125	24 Stunden	3
	350	1 Stunde	24
Stickstoffdioxid	40	Jahr	-
	200	1 Stunde	18
Benzol	5	Jahr	-
Tetrachlorethen	10	Jahr	-
Schwebstaub (PM-10)	40	Jahr	-
	50	24 Stunden	35

Bei allen gasförmigen Stoffen ist die Massenkonzentration auf 293,15 K und 101,3 kPa bezogen. Der Schutz vor Gefahren für die menschliche Gesundheit ist sichergestellt, wenn die Gesamtbelastung an keinem Beurteilungspunkt diese Immissionswerte überschreitet. Beurteilungspunkte ermöglichen die Beurteilung des vermutlich höchsten Risikos für die langfristige Exposition bzw. die Exposition gegenüber Spitzenbelastungen. Damit erfolgt im Gegensatz zur TA Luft 86 keine flächenbezogene Beurteilung. Weiterhin sind folgende Immissionswerte festgelegt:

- Immissionswert für Staubniederschlag (nicht gefährdender Staub) zum Schutz vor erheblichen Belästigungen oder erheblichen Nachteilen: 0,35 g/m²d, bezogen auf ein Jahr. (Nr. 4.3.1 TA Luft 2002)
- Immissionswerte zum Schutz von Ökosystemen und der Vegetation (Tabelle 2.33).

Tabelle 2.33: Immissionswerte für Schwefeldioxid und Stickstoffoxide zum Schutz von Ökosystemen und der Vegetation – Nr. 4.4.1 TA Luft 2002

Stoff/Stoffgruppe	Konzentration μg/m³	Mittelungszeitraum	Zulässige Überschreitungshäufigkeit im Jahr
Schwefeldioxid	20	Jahr und Winter (1. Oktober bis 31. März)	Ökosysteme
Stickstoffoxide, angegeben als Stickstoffdioxid	30	Jahr	Vegetation

- Immissionswert für Fluorwasserstoff zum Schutz vor erheblichen Nachteilen (Nr. 4.4.2 TA Luft 2002) $0.4 \mu g/m^3$, bezogen auf ein Jahr
- Immissionswerte für Schadstoffdepositionen (Nr. 4.5.1 TA Luft 2002). Diese Immissionswerte sind in Tabelle 2.38 aufgeführt.

Grenzwerte und Alarmschwellen der EU-Richtlinien

Die EU-Rahmenrichtlinie 96/62/EG vom 27.09.1996 über die Beurteilung und die Kontrolle der Luftqualität verpflichtet u.a. zur Festlegung von Grenzwerten und ggf. Alarmschwellen für folgende Stoffe: Schwefeldioxid, Stickstoffdioxid, Feinpartikel wie Ruß (einschließlich PM10), Schwebstaub, Blei, Ozon, Benzol, Kohlenmonoxid, polyzyklische aromatische Kohlenwasserstoffe, Cadmium, Arsen, Nickel und Quecksilber.

In der 1. Tochterrichtlinie 1999/30/EG vom 22.04.1999 sind Grenzwerte, Alarmschwellen und andere Bewertungsmaßstäbe für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide, Partikel und Blei, in der 2. Tochterrichtlinie 2000/69/EG vom 16.11.2000 für Benzol und Kohlenmonoxid festgelegt (Tabelle 2.34). Gegenwärtig setzt die Bundesregierung die Rahmenrichtlinie und die Tochterrichtlinien in nationales Recht um. Das wird zu Änderungen des Bundes-Immissionsschutzgesetzes und der Technischen Anleitung zur Reinhaltung der Luft (TA Luft) führen, vor allem aber zu einer Neufassung der 22. BImSchV.

Grenzwerte im Sinne der Richtlinie sind Bewertungsmaßstäbe, die auf Grund wissenschaftlicher Erkenntnisse mit dem Ziel festgelegt sind, schädliche Auswirkungen auf die menschliche Gesundheit und/oder die Umwelt insgesamt zu vermeiden, zu verhüten oder zu verringern.

Für einige Grenzwerte sind Toleranzmargen festgelegt worden. Dabei handelt es sich um jährlich kleiner werdende Zuschläge zum Grenzwert, die bis zu dem Zeitpunkt, an dem die Grenzwerte eingehalten werden müssen, den Wert Null erreichen. Toleranzmargen sollen einerseits der Erfolgskontrolle bei der Luftreinhaltung dienen, andererseits sind die Mitgliedsländer bei Überschreitung der Summe von Grenzwert (Konzentrationswert) und im Beurteilungsjahr gültiger Toleranzmarge verpflichtet, innerhalb von 24 Monaten Maßnahmepläne zu erstellen, die geeignet sind, die Grenzwerte zu den festgesetzten Terminen einhalten zu können. In Tabelle 2.34 sind die Toleranzmargen für das Jahr 2001 aufgeführt.

Tabelle 2.34: Grenzwerte und Alarmschwellen der 1. und 2. EU-Tochter-Richtlinie

Schadstoff	GW	GW + TM 2001	Luftquali- tätsmerk- mal	Bezugszeit- raum	Schutzgut	Nebenbedin- gungen	Zeitpunkt Erreichen des GW	OBS	UBS 3
Schwefel- dioxid	μg/m ³ 350	μg/m ³ 470	Stunden- mittelwert	Kalender- iahr	Mensch	Überschreitung höchst. 24-mal	1.1.2005	μg/m ³	µg/m ³
	125		Tages- mittelwert	Kalender- jahr	Mensch	Überschreitung höchst. 3-mal	1.1.2005	75	50
	20		Jahres- mittelwert (Winter- mittelwert)	Kalender- jahr und Winter (1.1031.3.)	Ökosys- tem			12	8
	500 ¹⁾		Stunden- mittelwert		Mensch	Auslösung: Überschrei- tung in 3 aufein. folgenden Stunden			
Stickstoff- dioxid	200	290	Stunden- mittelwert	Kalender- jahr	Mensch	Überschreitung höchst. 18-mal	1.1.2010	140	100
	40	58	Jahres- mittelwert	Kalender- jahr	Mensch		1.1.2010	32	26
	400 1)		Stunden- mittelwert		Mensch	Auslösung: Überschreitung in 3 aufein. folgenden Stunden			
Stickstoff- oxide	30		Jahres- mittelwert	Kalender- jahr	Vegetati- on			24	19,5
Partikel (PM10)	50	70	Tages- Mittelwert	Kalender- jahr	Mensch	Überschrei- tung höchst. 35- mal	1.1.2005	30	20
	40	46,4	Jahres- Mittelwert	Kalender- jahr	Mensch		1.1.2005	24	19,25
Blei	0,5	0,9	Jahres- Mittelwert	Kalender- jahr	Mensch		1.1.2005	0,35	0,25
Benzol	5	10	Jahres- mittelwert	Kalender- jahr	Mensch		1.1.2010	3,5	2
Kohlen- monoxid (mg/m ³)	10	16	Höchster 8- Stunden- mittelwert	Tag	Mensch		1.1.2005	7	5

1) Alarmschwelle

GW ... Grenzwert OBS ... Obere Beurteilungsschwelle TM ... Toleranzmarge UBS ... Untere Beurteilungsschwelle

Alle Werte für die gasförmigen Stoffe in Tabelle 2.34 beziehen sich auf eine Temperatur von 293 K und einen Luftdruck von 101,3 kPa.

Zusätzlich zu den Grenzwerten sind obere und untere Beurteilungsschwellen festgelegt worden, durch die die Art der Überwachung (z.B. Messung, Berechnung u.a.) festgeschrieben ist.

In der Entscheidung der Kommission vom 17.10.2001 ist präzisiert, dass die Konzentration während der dem Bericht vorhergehenden fünf Jahre zu ermitteln ist und dass die Beurteilungsschwelle als überschritten gilt, falls sie in mindestens drei dieser fünf Jahre überschritten wurde.

Alarmschwellen sind Bewertungsmaßstäbe, bei deren Überschreitung (kurzfristige Exposition) eine unmittelbare Gefahr für die menschliche Gesundheit besteht und umgehend Maßnahmen (z.B. Unterrichtung der Bevölkerung) ergriffen werden müssen.

In der 3. Tochterrichtlinie 2002/3/EG über den Ozongehalt der Luft sind Zielwerte, langfristige Ziele sowie Informations- und Alarmschwellen festgelegt. Der Zielwert für den Schutz der menschlichen Gesundheit ist der höchste 8-Stunden-Mittelwert eines Tages (aus stündlich gleitenden 8-Stunden-Mittelwerten). Er beträgt 120 μ g/m³ und darf höchstens an 25 Tagen pro Jahr überschritten werden. Als Zielwert für den Schutz der Vegetation ist ein AOT 40 (Accumulation Over Threshold of 40 ppb) von 18 000 μ g/m³ h (gemittelt über 5 Jahre) festgelegt. AOT 40 ist definiert als Summe der Differenzen zwischen den stündlichen Konzentrationen, die größer als 80 μ g/m³ sind und dem Wert von 80 μ g/m³; dabei wird ausschließlich die Zeitspanne zwischen 08:00 Uhr und 20:00 Uhr MEZ in den Monaten Mai bis Juli betrachtet. Die beiden Zielwerte müssen, soweit wie möglich, bis zum Jahr 2010 erreicht werden.

Als langfristiges Ziel für den Schutz der menschlichen Gesundheit ist die Einhaltung des Wertes von $120~\mu g/m^3~durch$ den höchsten 8-Stunden-Mittelwert eines Tages definiert. Für den Schutz der Vegetation ist als langfristiges Ziel ein AOT 40 von 6000 $\mu g/m^3~h$ festgelegt.

Maximale Immissions-Werte der VDI-Richtlinien

Der Verein Deutscher Ingenieure (VDI) gibt mit den Richtlinien VDI 2310 Richtwerte als Entscheidungshilfen bei der Beurteilung von Luftverunreinigungen an. Zum Schutz des Menschen werden maximale Immissionskonzentrationen (MIK-Werte) festgelegt, deren Zeitbasis von 0,5 Stunden bis zu maximal einem Jahr reicht. Anders als in der TA Luft und den Verordnungen zum Bundes-Immissionsschutzgesetz werden damit auch Vergleichswerte für kurzfristig auftretende Immissionsspitzen zur Verfügung gestellt.

Die in der Richtlinie angegebenen Werte werden so festgelegt, dass "...Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für den Menschen, insbesondere auch für Kinder, Kranke und Alte, bei ihrer Einhaltung" vermieden werden.

Nicht in die Richtlinie aufgenommen wurden Stoffe, die unter dem Verdacht stehen, eine krebserzeugende oder erbgutschädigende Wirkung zu besitzen, da für solche Substanzen aus den oben genannten Gründen das Minimierungsgebot gilt.

Zur Beurteilung der Immissionskonzentrationen festgelegte MIK-Werte zum Schutze des Menschen sind in Tabelle 2.35 dargestellt.

Tabelle 2.35: MIK-Werte nach VDI 2310

Schadstoff	Wert	Dimension	Bezugszeitraum	VDI-Richtlinie
Kohlenmonoxid	50	mg/m³ 8)	30 Minuten	2310
	10	mg/m³ 8)	Tag	
	10	mg/m³ 8)	Jahr	
Stickstoffdioxid	2001)	μg/m³ ⁹⁾	30 Minuten	2310 Bl. 12
	100 ¹⁾	μg/m³ ⁹⁾	Tag	
Stickstoffmonoxid	1	mg/m³ 8)	30 Minuten	2310
	0,5	mg/m³ 8)	Tag	
Schwefeldioxid	1000 ²⁾	μg/m³ ⁸⁾	30 Minuten	2310 Bl. 11
	300 ³⁾	μg/m³ ⁸⁾	Tag	
Ozon	120	μg/m³ ⁹⁾	30 Minuten	2310 Bl. 15
	100	μg/m ^{3 9)}	8 Stunden	
Fluorwasserstoff	0,2	mg/m³ 8)	30 Minuten	2310
	0,1	mg/m³ 8)	Tag	
	0,05	mg/m³ 8)	Jahr	
Schwebstaub	500 ⁴⁾	μg/m³	Stunde	2310 Bl. 19
	250 ⁵⁾	μg/m³	Tag	
	150 ⁶⁾	μg/m³	Tag	
	75	μg/m³	Jahr	
Blei und anorganische	3,0 ⁷⁾	μg/m³ ⁸⁾	Tag	2310
Bleiverbindungen (als Pb)				
	1,5 ⁷⁾	μg/m³ ⁸⁾	Jahr	
Cadmiumverbindungen (als Cd)	0,05	μg/m³	Tag	2310

Luftqualitätsmerkmal/Art des Bewertungsmaßstabes:

arithmetischer Mittelwert über den Bezugszeitraum

1) ...höchstens eine Überschreitung pro Monat bis zum dreifachen Wert
2) ... höchstens einmal pro Tag

³⁾ ... höchstens an 4 aufeinander folgenden Tagen

... bis zu drei aufeinander folgende Stunden

5) ... an einzelnen, nicht aufeinander folgenden Tagen

... an aufeinander folgenden Tagen

... Abscheidefunktion in Anlehnung an die Johannesburger Konvention mit einem Medianwert bei d_{ae} = 10 μ m (Dichte 1)

... bezogen auf 20 °C und 101,3 kPa

⁹⁾ ... bezogen auf 293 K und 101,3 kPa

In verschiedenen Blättern dieser Richtlinie sind darüber hinaus auch maximale Immissionswerte zum Schutz der Vegetation und landwirtschaftlicher Nutztiere festgelegt.

Immissionsbegrenzende Werte des LAI

Zur Vermeidung schädlicher Umwelteinwirkungen durch Luftverunreinigungen hat der Länderausschuss für Immissionsschutz (LAI), weitgehend auf der Basis von Bewertungen seines Unterausschusses "Wirkungsfragen", für bereits in den vorangegangenen Abschnitten aufgeführte und für weitere Stoffe "immissionsbegrenzende Werte" vorgeschlagen. Das sind Bewertungsmaßstäbe unterschiedlicher Art, z.B. Immissionswerte der TA Luft, Orientierungswerte für die Sonderfallprüfung nach TA Luft, Orientierungswerte für großräumige staatliche Luftreinhaltestrategien und Zielwerte für die staatliche Luftreinhalteplanung (Tabelle 2.36).

Den Bewertungsmaßstäben für Schwefeldioxid und von Stickstoffdioxid liegen Leitwerte aus den Richtlinien 80/779/EWG und 85/203/EWG zugrunde.

Die Bewertungsmaßstäbe für die sieben krebserzeugenden Stoffe entstammen der LAI-Studie "Krebsrisiko durch Luftverunreinigungen" von 1992. Die Zielwerte basieren auf einem Gesamtrisiko durch die Einwirkung dieser Stoffe von 1:2500 bei 70-jähriger Exposition, die Orientierungswerte auf einem analogen Risiko von 1:1000.

Tabelle 2.36: Vorschläge des LAI für immissionsbegrenzende Werte

nsch nsch
nsch nsch
nsch
nsch
13011
nsch
dwirtsch.
zpflanzen
pfindliches
osystem
etation
nsch
nsch, Tier, osystem
osystem
pfindliches
system
nsch
nsch
nsch
nsch
nsch
jetation, nsch
r

1) ... in der Schriftenreihe des LAI veröffentlicht Luftqualitätsmerkmal/Art des Bewertungsmaßstabes: arithmetischer Mittelwert über den Bezugszeitraum

Erläuterungen: Immissionswert: Orientierungswert TAL:

Vorschlag eines Immissionswertes nach Nr. 2.5.2 TA Luft 86 Vorschlag eines Orientierungswertes für die Sonderfallprüfung nach Nr. 2.2.1.3 TA Luft 86 Vorschlag eines Orientierungswertes für großräumige staatliche Luftreinhaltestrategien Vorschlag eines Zielwertes für die staatliche Luftreinhalteplanung Orientierungsw. g. L.:

Zielwert:

WHO-Leitwerte

Die Weltgesundheitsorganisation (WHO), Regionalbüro für Europa hatte bereits im Jahr 1987 Luftqualitätsleitlinien veröffentlicht (Air Quality Guidelines for Europe). Die zweite Ausgabe erschien im Jahr 2000.

Die Leitlinien sind die Basis für die EU-Grenzwerte und auch für die LAI-Bewertungsmaßstäbe. WHO-Leitwerte sind unabhängig von diesen Überführungen auch als Erkenntnisquelle bei der Bewertung von Stoffen nutzbar, für die ganz oder teilweise andere Bewertungsmaßstäbe fehlen. Beispielhaft sind in Tabelle 2.37 Leitwerte für Toluol, Schwefelwasserstoff und Mangan aufgeführt.

Tabelle 2.37: WHO-Leitwerte

Schadstoff	Wert	Dimension	Kategorie des Bewertungsmaßstabes	Bezugszeitraum	Schutzgut
Toluol	1	mg/m³	Leitwert	30 Minuten	Mensch
			(Geruchsschwelle)		
	0,26	mg/m³	Leitwert	Woche	Mensch
Schwefelwasser-	7	μg/m³	Leitwert	30 Minuten	Mensch
stoff			(Geruchsschwelle)		
	150	µg/m³	Leitwert	Tag	Mensch
Mangan	0,15	μg/m³	Leitwert	Jahr	Mensch

Luftqualitätsmerkmal/Art des Bewertungsmaßstabes: arithmetischer Mittelwert über den Bezugszeitraum

Zulässige zusätzliche Frachten der Bodenschutz- und Altlastenverordnung und Immissionswerte der TA Luft 2002

Auf der Basis des Gesetzes zum Schutz des Bodens vom 17.03.1998 wurde am 12.07.1999 die Bodenschutz- und Altlastenverordnung - BBodSchV - erlassen. Hier sind "zulässige zusätzliche jährliche Frachten an Schadstoffen über alle Wirkungspfade", somit auch einschließlich des Luftpfades, festgelegt. Zu diesen Frachten wurden im Auftrag des LAI Immissionswerte ("Niederschlagsbezogene Werte zum Schutze des Bodens") vorgeschlagen, die in die Neufassung der TA Luft aufgenommen worden sind.

In Tabelle 2.38 sind die Werte für die Frachten, ergänzt durch die Umrechnung in die Dimension µg/(m²d), und daraus resultierende Immissionswerte der neuen TA Luft nebeneinander aufgeführt.

Tabelle 2.38: Zulässige zusätzliche Frachten der BBodSchV und Immissionswerte für Schadstoffdepositionen der TA Luft 2002 (Nr. 4.5.1)

Schadstoff		Fra	acht		Immissionsw	ert TA Luft
	Wert	Dimension	Wert	Dimension	Wert	Dimension
Blei	400	g/ha.a	110	μg/(m²d)	100	μg/(m²d)
Cadmium	6	g/ha.a	1,6	μg/(m²d)	2	μg/(m²d)
Chrom	300	g/ha.a	82	μg/(m²d)	-	-
Kupfer	360	g/ha.a	99	μg/(m²d)	-	-
Nickel	100	g/ha.a	27	μg/(m²d)	15	μg/(m²d)
Quecksilber	1,5	g/ha.a	0,4	μg/(m²d)	1	μg/(m²d)
Zink	1200	g/ha.a	329	μg/(m²d)	-	-
Arsen					4	μg/(m²d)
Thallium					2	μg/(m²d)

Bezugszeitraum: Jahr

3 Anlagensicherheit/Störfallvorsorge und Schadensereignisse

3.1 Störfallrecht

Die Mitgliedstaaten der EU sind gemäß Artikel 19 Absatz 4 der Richtlinie 96/82/EG verpflichtet, über die Durchführung dieser Seveso-II-Richtlinie alle drei Jahre Bericht zu erstatten.

Über den Zeitraum von 2000 bis 2002 ist bis Mitte des Jahres 2003 zu berichten. Allgemeine Informationen, wie Gesamtzahl der Betriebe, die von Artikel 6 und 9 der Richtlinie (Betriebsbereiche mit Grund- und erweiterten Pflichten – s. Tabelle 3.1)

Tabelle 3.1: Betriebsbereiche/Anlagen nach Störfall-Verordnung 2000 (Stand: Mai 2002)

Regierungs- bezirk	Betriebsberei mit erweiterten P		Betriebsber Grundpflich		Sun	Anlagen nach § 1 Abs. 3 (alles Grund- pflichten)	
	Betriebsbe- reiche	Anlagen	Betriebs- bereiche	Anlagen	Betriebs- bereiche	Anlagen	
Dessau	17	32	13	20	30	52	35
Halle	22	86	12	10	34	96	28
Magdeburg	11	23	11	18	22	41	72
Summe - Betriebsbereiche - Anlagen	50	141	36	48	86	189	135
Summe sämtlicher Anla- gen (MLU)						;	324

und Informationen zu

- Sicherheitsberichten
- Notfallplänen
- Domino-Effekten und
- Inspektionen der Behörden vor Ort

sind zu erfassen und weiter zu melden.

Regelungen zu Inspektionen enthält der § 16 Störfall-Verordnung.

Die ersten Ergebnisse dieser Vor-Ort-Kontrollen wurden bereits auf dem am 11. Oktober 2001 im Landesamt für Umweltschutz stattgefundenen Seminar vorgestellt und diskutiert.

In Auswertung dieser Ergebnisse wird vom LAU ein landeseinheitliches Überwachungsprogramm erarbeitet, welches mit den betroffenen Behörden abzustimmen ist.

3.2 Schadensereignisse

3.2.1 Situation

In Sachsen-Anhalt wurden im Jahr 2001 den Umweltschutzbehörden insgesamt 7 Schadensereignisse bekannt, davon 4 Fälle in genehmigungsbedürftigen Anlagen nach Bundes-Immissionsschutzgesetz.

Eine Zusammenstellung der Ereignisse enthalten die Tabellen 3.2.1 bis 3.2.3 im Anhang.

3.2.2 Auswirkungen

Ein schwerer Unfall im Sinne der Störfall-Verordnung, Anhang VI, I. sei an dieser Stelle detaillierter dargestellt.

Explosion in einer Phenolsyntheseanlage

Im Oktober 2001 kam es in einer Phenolsyntheseanlage zu dem schlagartigen Zerbersten eines 2,5 m³-Behälters mit 90 %igem Cumolhydroperoxid (CHP). Hierdurch wurde ein Brand mit Nachfolge-explosionen ausgelöst. Die Anlage wurde weitgehend zerstört.

In diesem Betriebsbereich mit erweiterten Pflichten nach Störfall-Verordnung wird Cumol [C_6H_5 -CH(CH₃)₂] durch Luftoxidation zu Cumolhydroperoxid [C_6H_5 -C(CH₃)₂-O-OH] umgewandelt. Das CHP wird anschließend in einem mehrstufigen Prozess bis auf 90 %iges Cumolhydroperoxid (CHP-90) angereichert und in der Verfahrensstufe "Zerlegung" durch gezielte Zugabe von Schwefelsäure in Phenol [C_6H_5 -OH] und Aceton [H_3 C-CO-CH₃] zerlegt.

Aufkonzentriertes CHP neigt bei Temperaturen größer 70 Grad Celsius zur thermischen Instabilität und kann sich dann infolge der stark exotherm ablaufenden Reaktion spontan autokatalytisch zersetzen. Bei Einwirken von Säure, insbesondere von Schwefelsäure, findet dieser Zersetzungsprozess schon bei wesentlich niedrigeren Temperaturen statt.

Das aus zwei Anreicherungskolonnen (K1/K2) kommend, hochangereicherte CHP wurde jeweils einem Vorlagebehälter (B 90/1 und B 90/2) zugeführt. Weiterhin stand noch ein Reservebehälter (B 90/R) zur Verfügung. Einer dieser Vorlagebehälter war der o. g. 2,5 m³-Behälter (B 90/2) mit 90 %igem CHP. Die Behälter B 90/1 und B 90/2 waren über eine gemeinsame Abnahmeleitung (DN 150) miteinander verbunden. Über diese Abnahmeleitung konnte das CHP-90 separat den zwei Zerlegungen (Z1 bzw. 2) zugeführt werden. Dazu wurde das CHP-90 über eine ca. 15 m hohe Steigleitung gepumpt, die dann wieder zur Zerlegung abfiel (umgekehrter Siphon). Das umgekehrte Siphonsystem diente dazu, dass bei Abstellen der Pumpe nach dem Vorlagebehälter B 90/1 oder B 90/2 das zur Zerlegung abfallende Rohr von CHP-90 leer lief. Über ein Schauglas im Siphonbogen konnte beobachtet werden, ob Produkt im Überlaufbogen anstand. Mit diesem System sollte erreicht werden, dass bei abgestellter Zerlegung keine Produktverbindung mehr zwischen dem Vorlagebehälter und der Zerlegung bestand. Bei abgestellter Zerlegung und bei einer eventuell auftretenden Betriebsstörung an der Zerlegung sollte verhindert werden, dass Säure in das CHP-90-Einspeisesystem geraten konnte.

Vor der Zerlegung Z1 und Z2 blieb allerdings bei abgestelltem Zustand immer eine "Restflüssigkeitssäule" von einigen Litern CHP-90 stehen, dessen Höhe sich aus dem hydrostatischen Überlauf der Zerlegung ergibt. Vor der Zerlegung befand sich eine Rückschlagklappe (DN 50), die bei abgestellter Zerlegung verhindern sollte, dass "saures Produkt" aus der Zerlegung in die Restflüssigkeitssäule gelangt. Die Rückschlagklappe war aus Cr-Ni-Stahlguss mit innenliegender Klappenwelle gefertigt. Die Behälter B 90/1, B 90/2 und B 90/R sind in Reihe verbunden und an ein Ventsystem angeschlossen.

Vor dem Schadensereignis war der Behälter (B 90/2) und die Zerlegung 2 außer Betrieb, so dass der Produktstrom aus der Anreicherungskolonne K2 in den Reservebehälter (B 90/R) gefördert wurde.

Als Schadensursache wurde ermittelt, dass durch eine Undichtigkeit an der o. g. Rückschlagklappe (DN 50) eine Ansaugung des Reaktionsgemisches aus der nicht in Betrieb befindlichen Zerlegung 2 nach Passieren des Bereiches der Restflüssigkeitssäule über das Entlüftungssystem des umgekehrten Siphons in den CHP-Vorlagebehälter B 90/2 erfolgte. Hier ereignete sich dann die durchgehende Zerlegungsreaktion des 90 %igen Cumolhydroperoxides. Dieser Säureeintrag konnte durch den sich einstellenden Unterdruck im Bereich der Restflüssigkeitssäule infolge der Druckverhältnisse der drei verbundenen Behälter in Verbindung mit dem Ventsystem ausgelöst werden.

Das Ereignis wurde als eine Störung des bestimmungsgemäßen Betriebs entspr. Anhang VI, Teil 1, Nr. 4a (Sachschäden im Betriebsbereich: ab 2 Millionen EURO) der Störfall-VO eingeordnet.

Von den zuständigen Behörden wurde nach der Erfüllung eines Maßnahmekataloges der Wiederaufbau der Anlage entspr. § 15 Abs. 2 BImSchG genehmigt.

4 Die Überwachung umweltrelevanter Inhaltsstoffe in flüssigen Treibstoffen

Auch im Jahre 2001 kontrollierte im Land Sachsen-Anhalt das Staatliche Amt für Umweltschutz Halle durch Stichprobenentnahme beim Erzeuger die Einhaltung von Grenzwerten, die im Benzin-Blei-Gesetz und den dazu erlassenen Rechtsvorschriften bezüglich der umweltrelevanten Inhaltsstoffe von flüssigen Treibstoffen festgelegt sind. Untersucht wurden die Ottokraftstoffe (Normal, Super und Super plus) auf die Einhaltung der zulässigen Höchstwerte für Blei, Benzol und Methanol sowie Dieselkraftstoff auf die Einhaltung der vorgeschriebenen Grenzwerte für Schwefel. Im Ergebnis der Untersuchungen wurden keine Überschreitungen der vorgegebenen Höchstwerte festgestellt.

Die Ergebnisse bestätigen aus der Sicht des Umweltschutzes die positive Entwicklung in Richtung umweltverträglicherer Treibstoffe auch für das Land Sachsen-Anhalt.

Aus chemikalienrechtlicher Sicht sind Ottokraftstoffe Benzine. Benzine sind krebserzeugende Stoffe der Kategorie 2, d.h., sie sollten als krebserzeugend für den Menschen angesehen werden. Benzol ist ein Inhaltsstoff, der beim Menschen bekanntermaßen krebserzeugend wirkt und deshalb zur Kategorie 1 der krebserzeugenden Stoffe gehört.

Durch die 10. BImSchV wurden die zulässigen Höchstgehalte von Benzol in Ottokraftstoffen auf 5 Vol.-% begrenzt. Durch Änderungsverordnung gilt ab 01. Januar 2000 ein Ablehnungsgrenzwert von 1,1 Vol.-%. Die Werte im Bereich von 0,57 bis 1,29 Vol.-% bestätigen im Rahmen der Messfehlergrenzen die Einhaltung der Grenzwerte und zeigen im Vergleich zu den Ergebnissen aus den vorhergehenden Jahren eine konstante Verminderung des Gefährdungspotential durch Benzol.

Weiterhin ohne Bedeutung als Kraftstoffzusatz ist das giftige Methanol bei der Herstellung von Ottokraftstoffen im Land Sachsen-Anhalt.

Zu den umweltrelevanten Inhaltsstoffen von Treibstoffen gehören auch der Schwefel und seine Verbindungen. In die Untersuchungen einbezogen wurde die Kontrolle des Schwefelgehaltes im Dieselkraftstoff. Die Schwefelwerte sind für den Dieselkraftstoff immer < 380 mg/kg, d.h., dass der geänderte Ablehnungsgrenzwert eingehalten wird.

Die Einzelergebnisse aller Untersuchungen sind in der Tabelle 4.1 aufgeführt.

Probleme ergaben sich im Berichtsjahr insbesondere durch die vom Analysenlabor ausgewiesenen Benzolwerte. Sie lagen in mehreren Fällen erheblich höher als die Erzeugerangaben. Ein zur Überprüfung dieser Abweichungen eingeschaltetes unabhängiges Labor bestätigte die Erzeugerangaben.

Tabelle 4.1: Erfassung umweltrelevanter Inhaltsstoffe in Ottokraftstoffen und Dieselkraftstoff

Probe- Nr.	Datum	Bezeichnung der Probe (Art, Sorte)	Erzeuge	rangabe	Analysenergebnisse							
			Schwefel-	Benzol	Blei	Benzol	Methanol	Schwefel				
			gehalt	(Vol%)	(mg/l)	(Vol%)	(Vol%)	(Gew%)				
			(Gew%.)	` ′	· • ,	, ,	, ,	,				
01/01	16.01.01	VK Super	,		< 0,5	1,0	0,23					
2/01	16.01.01	VK Super plus			< 0,5	0,57	0,19					
3/01	16.01.01	DK	0,0324					0,0329				
4/01	13.02.01	DK	0,0330					0,0343				
5/01	13.02.01	VK Super			< 0,5	0,96	0,36					
6/01	13.02.01	VK Normal			< 0,5	1,1	0,18					
7/01	13.03.01	VK Super		0,72	< 0,5	1,09	0,11					
08/01	13.03.01	VK Super plus		0,40	< 0,5	0,58	0,66					
)9/01	13.03.01	DK	0,0312					0,0270				
0/01	10.04.01	DK	0,0274					0,0308				
1/01	10.04.01	VK Super		0,77	< 0,5	1,0	0,045					
2/01	10.04.01	VK Normal		0,88	< 0,5	1,2	0,089					
3/01	08.05.01	DK						0,0340				
4/01	08.05.01	VK Super plus			< 0,5	0,64	< 0,01					
5/01	08.05.01	VK Normal			< 0,5	0,91	0,05					
6/01	05.06.01	DK	0,033					0,034				
7/01	05.06.01	VK Super		0,76	< 0,5	1,0	0,05					
8/01	05.06.01	VK Normal		0,83	< 0,5	1,2	0,11					
9/01	03.07.01	DK	0,027					0,024				
0/01	03.07.01	VK Super plus		0,40	< 0,5	0,59	0,17					
1/01	03.07.01	VK Normal		0,79	< 0,5	1,18	0,08					
2/01	07.08.01	DK	0,0325					0,03				
3/01	07.08.01	VK Super		0,80	< 0,5	1,24	0,06					
4/01	07.08.01	VK Normal		0,85	<0,5	1,29	0,16					
5/01	11.09.01	DK	0,033					0,024				
6/01	11.09.01	VK Super plus		0,43	< 0,5	0,75	0,15					
7/01	11.09.01	VK Normal		0,69	< 0,5	1,1	0,07					
8/01	10.10.01	DK	0,028					0,033				
9/01	10.10.01	VK Super		0,72	< 0,5	1,1	0,07					
30/01	10.10.01	VK Normal		0,78	< 0,5	1,1	0,05					

5 Lärm und Erschütterungen

Nach den vom Umweltbundesamt vorgelegten "Daten zur Umwelt 2000" stellt insbesondere der Lärm, allen voran der Straßenverkehrslärm, ein Gesundheits- und Umweltproblem dar. In Deutschland fühlten sich durch den Straßenverkehrslärm mehr als die Hälfte der Bevölkerung belästigt und immerhin gut 12 Millionen Bürger "stark belästigt". Eine Ursache dafür ist u.a. in der Verkehrszunahme der letzten Jahre zu sehen. Maßnahmen zur Reduzierung der Geräuschemissionen gegenüber denen der Abgasemissionen der Fahrzeuge standen weniger im Vordergrund. Es ist zu befürchten, dass rund 12 Millionen Menschen in Deutschland ein erhöhtes Risiko für Herzkrankheiten haben. Trotz technischer Maßnahmen zur Senkung der Schallpegel wie Lärmschutzwände oder Verbesserungen an den Fahrzeugen sind die Geräuschbelastungen seit Jahren unverändert hoch. Sowohl die Fahrleistungen als auch das Verkehrsaufkommen sind deutlich angestiegen. Nur die Verknüpfung vieler Maßnahmen kann hier Abhilfe schaffen, z. B. lärmarme Reifen für Fahrzeuge, lärmschluckende Fahrbahnbeläge, mehr Rücksicht durch umsichtiges Fahren und auch der Verzicht auf die eine oder andere Fahrt.

Tabelle 5.1: Belästigung durch Lärm in Sachsen-Anhalt

Lärmquelle	Belästigung		Belä	istigte i	n %		Belästigung	Belästigte in %
		1991	1993	1994	1996	1998	gestört und belästigt	2000
							äußerst	1,5
	stark	31,7	45,9	36,2	19,6	10,3	stark	7,5
Straßenverkehr	nicht so stark	52,9	41,9	40	41,6	53,1	mittelmäßig	23,9
	gar nicht	15,4	12,2	23,8	38,8	36,6	etwas	35,8
							überhaupt nicht	31,3
							äußerst	-
	stark	11,2	9,5	3,7	0,5	0,7	stark	-
Flugverkehr	nicht so stark	25,2	30,1	33,4	19,6	13,9	mittelmäßig	6,0
	gar nicht	63,6	60	62,9	79,9	85,4	etwas	28,4
							überhaupt nicht	65,7
							äußerst	1,5
	stark	4,2	5,8	0,8	2,4	2,8	stark	-
Schienenverkehr	nicht so stark	16,6	23,4	14,4	23,4	7,6	mittelmäßig	7,5
	gar nicht	79,2	79,2 70,8 82,4 74		74,2	89,7	etwas	13,4
							überhaupt nicht	77,6
							äußerst	-
	stark	3,4	2,8	4,3	0,5	0,7	stark	-
Industrie/	nicht so stark	22,3	25	18,7	15,8	9,0	mittelmäßig	6,0
Gewerbe	gar nicht	74,3	72,2	76,2	83,7	90,3	etwas	32,8
							überhaupt nicht	61,2
							äußerst	-
	stark	8,2	4,5	6,2	5,3	1,4	stark	-
Nachbarn	nicht so stark	16,1	16,1	15,9	21,5	27,6	mittelmäßig	10,4
	gar nicht	75,7	79,1	74,7	73,2	71,0	etwas	22,4
							überhaupt nicht	67,2
	stark	1,2	0	0				
Sportanlagen	nicht so stark	7,1	8,6	4,1				
	gar nicht	91,7	91,4	92,7				

Zugrundeliegende Fragestellungen:

2000:

1991-1994: Ich nenne Ihnen jetzt einige Lärmquellen. Bitte sagen Sie mir, ob Sie davon stark, nicht so stark oder gar nicht belästigt werden.

1996-1998: Wie stark fühlen Sie sich persönlich, also in Ihrem eigenen Wohnumfeld, von folgenden Dingen belästigt: stark,

nicht so stark, gar nicht?

Wenn Sie einmal an die letzten 12 Monate hier denken, wie stark fühlen Sie sich persönlich, also in Ihrem eigenen Wohnumfeld, von folgenden Dingen gestört oder belästigt? Antworten: äußerst gestört, stark gestört und belästigt, mittelmäßig gestört und belästigt, etwas gestört und belästigt und überhaupt nicht gestört und

belästigt.

Seit 1984 werden in den alten Bundesländern und seit 1991 auch in den neuen Bundesländern repräsentative Umfragen zu Einstellungen der Bevölkerung u. a. zum Lärm durchgeführt. In der Tabelle 5.1

sind die Befragungsergebnisse von 1991-2000 von Sachsen-Anhalt aufgeführt. 1992, 1995, 1997 und 1999 liegen keine Ergebnisse vor. Wie der Tabelle 5.1 zu entnehmen ist, hatten sich die Fragen 1996 und 2000 geändert. Besonders gravierend ist auch die Tatsache, dass die Befragungen ab 1996 im Winter durchgeführt wurden. Dies hat erheblichen Einfluss auf die Ausprägung der Lärmbelästigung. Eine direkte Vergleichbarkeit mit den bisherigen Befragungen ist somit nicht mehr gegeben.

Die Ergebnisse der Befragungen in Sachsen-Anhalt verdeutlichen, dass im Belästigungserleben der Bürger der Straßenverkehr die dominierende Geräuschquelle ist. Die Belästigtenanteile durch Flug-, Schienenverkehrs-, Gewerbe-/Industrie-, Sport- und Nachbarschaftslärm sind dagegen deutlich niedriger. Die Befragungsuntersuchungen bestätigen die allgemein bekannte Rangfolge der Geräuschquellenarten bezüglich des Grades der Belästigung: Straßenverkehr, Flugverkehr, Schienenverkehr, Industrie/Gewerbe und sonstige Quellen.

Gegenüber den Geräuschen gehören die Erschütterungen auch 2001 in Sachsen-Anhalt zu den relativ seltenen Umwelterscheinungen. Die Quellen von Erschütterungseinwirkungen waren Anlagen aus Industrie und Gewerbe und Verkehrswege. Die Einwirkungen konnten im Allgemeinen im Nahbereich der Quelle an Wohngebäuden festgestellt werden.

5.1 Ermittlung und Beurteilung

Fluglärm wird oftmals störender und belästigender als vergleichbarer Straßenverkehrslärm empfunden (Abbildung 5.1). Das Gesetz zum Schutz gegen Fluglärm schützt nicht ausreichend vor gesundheitlichen Beeinträchtigungen und Belästigungen, deshalb wird derzeit in Deutschland intensiv über die Novellierung des Fluglärmgesetzes diskutiert. Die neue Studie "Fluglärmwirkungen" des Umweltbundesamtes analysiert die Ergebnisse nationaler und ausländischer Lärmwirkungsstudien und formuliert Qualitätsziele zur Verhinderung des störenden und gesundheitsgefährdenden Fluglärms. Unter http://www.umweltbundesamt.de ist die Studie des UBA im Internet veröffentlicht.

Quelle: UBA

Abbildung 5.1: Startender Jet über Wohnhäusern

Im Rahmen des Fortbildungsprogramms 2001 des MLU wurde das LAU beauftragt, eine Fortbildungsveranstaltung zu den Themenbereichen Lärm, Windenergieanlagen, elektromagnetische Felder (EMF) zu organisieren und durchzuführen. Die Veranstaltung fand am 25.10.01 im LAU in Halle für Bedienstete der Umweltämter der Landkreise und kreisfreien Städte, der Staatlichen Umweltämter, der Regierungspräsidien, der Bergämter und für Mitarbeiter von in Sachsen-Anhalt ansässigen bekanntgegebenen Stellen für Geräusche statt. Die gehaltenen Vorträge umfassten folgende Themen:

- Umgebungslärmrichtlinie der EU
- TA Lärm Erfahrungen eines Gutachters
- Diskothekenlärm Erfahrungen eines Gutachters
- Untersuchungen zum Schießlärm in Halle

- Belästigung durch Schattenwurf von Windenergieanlagen
- Anzeigeverfahren nach 26. BImSchV

Das Tagungsmaterial konnte den Teilnehmern auf Anforderung per E-Mail im Januar 2002 zur Verfügung gestellt werden. Eine Internetpräsentation ist geplant.

Das LAU führte im Jahr 2001 Messeinsätze zur Ermittlung und Beurteilung von Geräusch- und Erschütterungsimmissionen in Städten und Gemeinden durch. Dabei handelte es sich um spezielle messtechnische Erhebungen, wobei überwiegend automatische Dauermessstationen zum Einsatz kamen. Die Messeinsätze des LAU dienten auch als Amtshilfen für die STAU, die Landratsämter, die Stadt- und Gemeindeverwaltungen. Sie waren überwiegend auf Bürgerbeschwerden im Einwirkungsbereich von Betrieben zurückzuführen. Die Ergebnisse der messtechnischen Erhebungen bzw. der schalltechnischen Gutachten werden kurz erläutert:

Für das Bergamt Halle wurden über einen längeren Zeitraum Vergleichsmessungen zur Ermittlung von Sprengerschütterungen an ausgewählten Messorten in den Ortschaften Petersberg und Frößnitz durchgeführt. Durch den Vergleich der ermittelten maximalen bewerteten Schwingstärken mit den Anhaltswerten der DIN 4150/2 wurden die Erschütterungsimmissionen beurteilt. Eine erhebliche Belästigung der Anwohner durch Erschütterungen konnte nicht festgestellt werden.

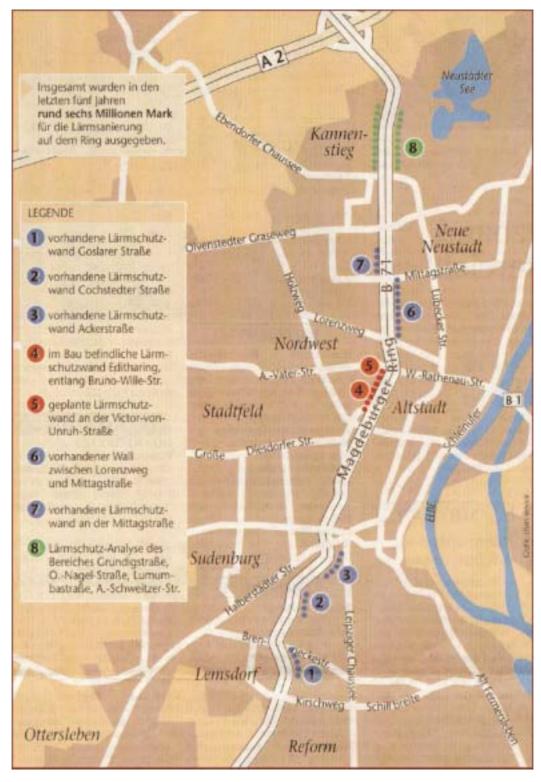
In Sandersdorf wurden im Auftrage des MLU Geräuschmessungen auf einem Grundstück im Einwirkungsbereich einer Mineralölspedition durchgeführt. Die Auswertung der Messungen ergab, dass der Gesamtgeräuschpegel unter dem gültigen Immissionsrichtwert tags von 60 dB(A) liegt, aber durch den tieffrequenten Geräuschanteil bei vorherrschenden Fahrzeugbewegungen (Fahrzeugmotorengeräusche) können Überschreitungen des Immissionsrichtwertes und des Anhaltswertes erwartet werden.

Für den Landkreis Wernigerode wurden Geräuschmessungen, verursacht durch eine Gaststätte mit Musikveranstaltungen in Darlingerode, durchgeführt. Die Beurteilung der Untersuchungsergebnisse nach TA Lärm zeigte, dass erhebliche Belästigungen durch Veranstaltungen während der Nachtzeit vorliegen und somit eine Sperrzeitenregelung nach Gaststättengesetz erforderlich wird.

Abbildung 5.2: Lärmsituation im Einwirkungsbereich eines Agrarbetriebes in Wahlitz

Auf Grund von Bürgerbeschwerden wurden vom LAU für den Landkreis Jerichower Land Geräuschmessungen in Wahlitz durchgeführt. Lärmverursacher ist eine landwirtschaftliche Anlage eines Agrarunternehmens (Abbildung 5.2). Die Beurteilung der Geräuschsituation nach TA Lärm ergab, dass erhebliche Belästigungen durch den Transport und die Einlagerungsarbeiten für die Nachtzeit vorliegen.

Anlass für eine weitere messtechnische Untersuchung in einem Agrarunternehmen (Gardelegen) war ein Amtshilfeersuchen durch das STAU Magdeburg. Als Richtwerteskala zur Beurteilung der Messergebnisse wurde der Bewertungsmaßstab der TA Lärm empfohlen. Eine Maximalabschätzung der gemessenen Geräuschsituation werktags ergab, dass ein Beurteilungspegel von 59 dB(A) nicht überschritten wird.


5.2 Maßnahmen zur Minderung von Lärm und Erschütterungen

Am 25. April 2001 fand bundesweit der 4. "Tag der Ruhe – gegen Lärm" statt, der vom Arbeitskreis Öffentlichkeitsarbeit der Deutschen Gesellschaft für Akustik e.V. (DEGA) organisiert wurde. Als gemeinsame Aktion wurde vorgeschlagen: 15 Sekunden Ruhe - da kann jeder um 14:15 Uhr mitmachen! Der Präsident des Landesamtes für Umweltschutz Sachsen-Anhalt, Herr Dr. Kamm, wies in einer Pressemitteilung auf das Thema Schutz vor Lärm - Schutz der Ruhe in Sachsen-Anhalt hin.

Die "Ruhe" ist zu einem wenig beachteten, sogar vergessenen Begriff in unserer Gesellschaft und der Lärm leider in den vergangenen Jahren zu einem immer größeren Umweltproblem geworden. Lärm ist das Umweltproblem Nummer 1 in Sachsen-Anhalt. Obwohl es in den vergangenen Jahren gelungen ist, die Lärmentwicklung von Anlagen, Maschinen, Geräten und Verkehrsmitteln zu mindern, ist eine Verminderung des Gesamtlärms nicht erreicht worden. Die Vielzahl vorhandener und neuer Lärmquellen sorgen für eine kontinuierliche "Verlärmung" unserer Umwelt, unter der besonders die Lebensund Wohnqualität und die Gesundheit vieler Menschen zu leiden hat. Nach den Angaben des Umweltbundesamtes (UBA) von 2000 fühlen sich 69 % der Bevölkerung Sachsen-Anhalts durch Straßenverkehrslärm gestört und belästigt, gefolgt mit 39 % durch Industrie- und Gewerbelärm und 34 % durch Fluglärm. Die häufigsten Beeinträchtigungen sind Behinderungen der Kommunikation, Schlafstörungen, Konzentrationsminderungen sowie Störungen der Erholung und Entspannung. Durch Dauerlärm wird das Herzkreislaufsystem belastet, auch Schwerhörigkeit ist eine entscheidende Folge.

Die europaweite Aktion "In die Stadt – ohne mein Auto!" am 22. September 2001 fand zum zweiten Mal in ganz Europa statt. Mehr als 100 Teilnehmer sind inzwischen in Deutschland registriert, darunter auch die Hauptstadt Berlin und die meisten Landeshauptstädte. In Sachsen-Anhalt wurde dieser Tag auch in Halle und Dessau begangen. Dieser Tag soll erlebbar machen, wie sich Alltagswege ohne Auto und damit auch weniger Lärm bequem bewältigen lassen. Mit Sonderermäßigungen oder zusätzlichen Linien werden die Teilnehmerstädte die Bevölkerung in Busse und Bahnen locken. Die Einweihung neuer Fahrradstationen und Straßenbahnhaltestellen, von Radwegen oder Tempo-30-Zonen setzt am Aktionstag Zeichen. Der Aktionstag wird vom Bundesumweltministerium und Umweltbundesamt gefördert sowie von allen großen Umwelt- und Verkehrsverbänden unterstützt. Der autofreie Tag stieß z.B. in Halle auf wenig Resonanz. Die Straßen waren voll wie an Wochentagen, Vereine informierten dennoch über Alternativen (Fahrrad fahren) zum Pkw.

Schallschutzwände an stark befahrenen Straßen sind in Sachsen-Anhalt nicht mehr die Ausnahme. Wohngebiete mehrerer Städte und Gemeinden erhielten zum Schutz vor Straßenverkehrslärm Schallschutzwände oder Schallschutzwälle, die die Lebensqualität der Anwohner verbessern. Zum Beispiel begann die Stadt Magdeburg vor 6 Jahren mit der Errichtung von Schallschutzwänden am Magdeburger Ring. Die Abbildung 5.3 enthält eine grafische Übersicht dieser Wände, die ca. 1,2 km lang sind.

Quelle: Magdeburger Volksstimme vom 01.02.01

Abbildung 5.3: Übersicht von Schallschutzwänden am Magdeburger Ring

Das MLU beauftragte bereits 2000 über eine Ausschreibung die LÄRMKONTOR GmbH, Hamburg, die Untersuchungen "Lärmminderung durch eine Schallschutzwand im Urteil der Betroffenen" durchzuführen. Das LAU hatte die Leistungsbeschreibung für diese Untersuchungen zu erarbeiten und sie fachlich zu begleiten. Es soll untersucht werden, in welchem Maße der Bau einer Schallschutzwand die Belästigung der Anlieger reduziert und wie diese Lärmminderungsmaßnahme das Belästigungsurteil, das subjektive Erleben von Belästigung, determiniert. Das zu erstellende Gutachten soll einen Vergleich zwischen den Urteilen der Betroffenen vor und nach Errichtung einer Schallschutzwand ziehen,

wobei die Ergebnisse von Befragungen der Betroffenen über die Belästigung und Störung in Beziehung zur akustischen Belastung zu setzen sind. Als Untersuchungsgebiet wurde das Wohngebiet hinter der geplanten Schallschutzwand am Magdeburger Ring zwischen Editharing und Viktor-von-Unruh-Straße gewählt. Im Jahr 2000 wurden die akustischen Untersuchungen und die ersten Befragungen der betroffenen Anwohner abgeschlossen. 2001 erfolgte auch die Fertigstellung der ca. 300 m langen Schallschutzwand zwischen Editharing und Viktor-von-Unruh-Straße (Abbildung 5.4). Die Untersuchungen werden im Jahr 2002 weitergeführt.

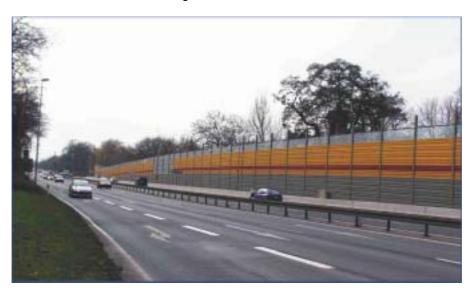


Abbildung 5.4: Schallschutzwand zwischen Editharing und Viktor-von-Unruh-Straße

5.3 Lärmminderungsplanung

Die Europäische Kommission hat einen Vorschlag für eine Richtlinie über die Bewertung und Bekämpfung von Umgebungslärm vorgelegt, um eine Grundlage für die Verminderung der Lärmbelastung in der Europäischen Union zu schaffen. Kernstück des Vorschlages ist die Einführung sogenannter Lärmkarten für städtische Ballungsräume mit über 100 000 Einwohnern und für Gebiete in der Nähe von Hauptverkehrsstraßen, Haupteisenbahnstrecken und Großflughäfen. Diese Lärmkarten werden auf lokaler Ebene veröffentlicht, damit die Öffentlichkeit informiert ist.

Bereits seit nunmehr 10 Jahren wurden für Städte in Sachsen-Anhalt die vorbereitende Lärmminderungsplanung, deren Grundlagen die Schallimmissions-, Immissionsempfindlichkeits- und Konfliktpläne sowie die Detailanalyse der Konfliktgebiete sind, überwiegend von externen Auftragnehmern auf der Grundlage des § 47a BImSchG erstellt. Das LAU war vom MLU beauftragt, die entsprechenden Leistungsbeschreibungen der Untersuchungen zu erarbeiten, Anlaufberatungen durchzuführen und die Vorhaben fachlich zu begleiten.

Der Schallimmissionsplan ist die flächenhafte, farbige Darstellung der Immissionen in Siedlungen durch verschiedene Geräuschquellen. Der Konfliktplan stellt flächenhaft und farbig die Unterschiede aus den Immissionswerten des Schallimmissionsplanes und den zulässigen Immissionswerten dar. Der Immissionsempfindlichkeitsplan ist die kartografische, farbige Darstellung der schutzwürdigen Gebiete. Die Detailanalyse der Konfliktgebiete beinhaltet eine Betroffenheitsanalyse mit den Bearbeitungsschritten:

- Kennzeichnung kleinräumiger Konfliktbereiche,
- Berechnung von Lärm-Einwohner-Kennzahlen (K_{LE}) für die Konfliktbereiche,
- Prioritätenreihung von notwendigen Lärmminderungsmaßnahmen für die Konfliktbereiche.

In Weiterführung der Lärmminderungsplanung in Sachsen-Anhalt wurde bereits 1999 mit der vorbereitenden Lärmminderungsplanung der Stadt Zerbst, die gemäß Auftrag des MLU vom LAU in Zusammenarbeit mit der Stadtverwaltung zu erarbeiten war, begonnen. 2000 wurde das vorhandene digitale Stadtmodell für die Erarbeitung der vorbereitenden Lärmminderungsplanung angepasst sowie vorbereitende Berechnungen und Darstellungen vorgenommen, um Fehlerkorrekturen vornehmen zu

können. In der Abbildung 5.5 ist das dreidimensionale Emissionsmodell vom Stadtzentrum dargestellt. Das Vorhaben wird im Jahr 2002 abgeschlossen.

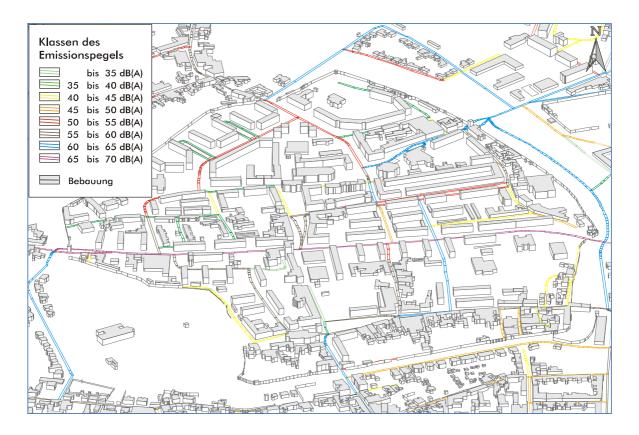


Abbildung 5.5: 3D-Emissionsmodell vom Stadtzentrum Zerbst

6 Elektromagnetische Felder und Licht

6.1 Elektromagnetische Felder

Elektrische, magnetische oder elektromagnetische Felder sind untrennbar mit der Erzeugung, Fortleitung und dem Verbrauch elektrischer Energie verbunden. In seiner Umgebung ist der Mensch ständig elektromagnetischen Feldern ausgesetzt, sowohl technisch erzeugten als auch natürlichen Feldern. Eine Übersicht über Quellen und Frequenzen elektromagnetischer Wellen enthält die Abbildung 6.1.

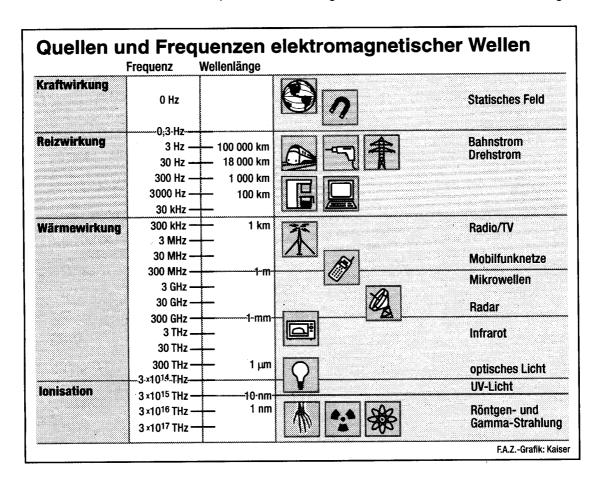


Abbildung 6.1: Quellen und Felder elektromagnetischer Wellen

Elektromagnetische Felder von Hochspannungsleitungen sollen für das Auftreten von Krebserkrankungen bei Kindern, speziell für Leukämien und ZNS-Tumoren verantwortlich sein. Eine britische Studie¹ konnte durch Überprüfung von 3838 malignen, im Kindesalter auftretenden Erkrankungen und durch Vergleich mit gesunden Kontrollen keine diesbezüglich erhöhte Mortalität infolge einer Exposition gegenüber elektromagnetischen Feldern nachweisen. Weder für die Gesamtrate von Leukämien oder Malignomen noch für speziellere Formen wie die akute lymphoblastische Leukämie oder ZNS-Tumoren ließ sich ein Zusammenhang feststellen.

Eine interessante Studie der russischsprachigen Fachliteratur zu Auswirkungen von elektromagnetischen Feldern² wurde im Auftrage des Bundesinstituts für Telekommunikation (Mainz) vom Pathologischen Institut der Berliner Charite durchgeführt. Die Studie kam zu der Einschätzung, dass das elektromagnetische Feld als ein stiller Disstressor bewertet werden kann, dessen bioaktiver Effekt von verschiedenen Faktoren abhängig ist und dessen pathogene Wirkung erst nach Jahren sichtbar wird.

¹ UK Childhood Cancer Study Investigators: Exposure to power-frequency magnetic fields and the risk of childhood cancer. Lancet 1999; 354: 1925-1931.

Prof. N. Day, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, England.

² Hecht, K.: Auswirkungen von elektromagnetischen Feldern. Eine Recherche russischer Studienergebnisse 1960-1996. Umwelt medizin gesellschaft 14 3/2001 S. 222.

Bezüglich der Symptomatik bestehen Ähnlichkeiten mit dem Chronischen Müdigkeitssyndrom (Chronic Fatigue Syndrom CFS).

Auch bei auftretenden gesundheitlichen Beschwerden im Sinne von Befindlichkeitsstörungen oder manifesten Erkrankungen wird häufig die Ursache in einer möglichen Belastung durch Umweltschadstoffe vermutet. Diese erworbenen Störungen werden als Multiple Chemical Sensitivity (MCS) bezeichnet. Die größte prospektive Studie zum Thema psychiatrische Morbidität und MCS unter Verwendung eines standardisierten diagnostischen Interviews wurde von der Technischen Universität München¹ durchgeführt. Die Studie zeigt, dass viele Patienten mit umweltbezogenen Beschwerden offenbar an somatischen Störungen, oftmals aber auch an anderen bekannten psychischen Erkrankungen leiden.

Die Forschung zu den umstrittenen Fragen der Wirkungen elektromagnetischer Felder standen im Mittelpunkt einer Fachtagung des Bundesamtes für Strahlenschutz (BfS). Die Forschung auf diesem Gebiet soll kurzfristig verstärkt werden. Zunächst werden Empfehlungen für ein künftiges Forschungsprogramm erarbeitet. Es wurden alle relevanten Themenfelder künftiger Forschungsprogramme diskutiert: Aufklärung der zu Grunde liegenden Wirkungsmechanismen, Epidemiologische Studien, Dosimetrie in der Nähe von Mobilfunkbasisstationen und in Zellexperimenten, Untersuchungen an Tieren und Zellen und schließlich eine bürgernahe Öffentlichkeitsarbeit. Das BfS wird auf der Basis der Erkenntnisse und Empfehlungen der Fachtagung dem BMU Vorschläge für ein Forschungsprogramm unterbreiten. Dieses Forschungsprogramm soll in den nächsten drei Jahren zur Klärung von zentralen Fragen im Bereich des Mobilfunks führen. Auch die Strahlenschutzkommission (SSK) hat sich für die verstärkte Erforschung möglicher Gesundheitsgefährdungen durch elektromagnetische Felder ausgesprochen. Die SSK hat zu dieser Problematik eine Empfehlung "Grenzwerte und Vorsorgemaßnahmen zum Schutz der Bevölkerung vor elektromagnetischen Feldern" herausgegeben, die im Internet unter http://www.ssk.de veröffentlicht ist.

Mit dem Abschluss einer "Vereinbarung über den Informationsaustausch und die Beteiligung der Kommunen beim Ausbau der Mobilfunknetze" besiegelten die Kommunalen Spitzenverbände Deutscher Städte- und Gemeindebund, Deutscher Städtetag sowie Deutscher Landkreistag und sechs Mobilfunknetzbetreiber die Grundlagen ihrer zukünftigen Zusammenarbeit beim Ausbau der Mobilfunkinfrastruktur (http://www.staedtetag.de). Als wichtigsten Schritt in der Vereinbarung wird die Selbstverpflichtung der Mobilfunknetzbetreiber angesehen, den Kommunen weitgehende Mitspracherechte bei der Auswahl von Mobilfunkstandorten einzuräumen. Die Netzbetreiber haben sich verpflichtet, die Städte, Gemeinden und Landkreise über ihre Pläne zum Netzausbau zu unterrichten und Standorte zu benennen. Die von den Kommunen vorgeschlagenen Alternativstandorte für Mobilfunkanlagen sollen vorrangig berücksichtigt und die Abstimmungsverfahren innerhalb eines Zeitraums von 8 Wochen abgeschlossen werden. Die Netzbetreiber werden die Kommunen auch über die tatsächliche Inbetriebnahme von Antennenanlagen informieren. Städtebauliche Belange sollen durch möglichst optimale Nutzung vorhandener und zukünftiger Antennenstandorte gewahrt werden.

In einer Pressemitteilung (Pressedienst Nr. 255/01; Internet: http://www.bmu.de/presse) informiert das BMU über Zusagen der Mobilfunkbetreiber, im Rahmen einer freiwilligen Selbstverpflichtung den Verbraucher- und Gesundheitsschutz beim Ausbau der Mobilfunknetze zu verbessern. In dieser Verpflichtung sind folgende wesentliche Punkte geregelt:

- Verbesserung der Verbraucherinformationen durch ein Ökosiegel für besonders strahlungsarme Handvs.
- Verbesserung der Kommunikation der Mobilfunkbetreiber mit den Kommunen und Ländern durch Beteiligung der Kommunen bei Standortplanung und Standortauswahl. Bei Kindergärten und Schulen werden alternative Standorte geprüft,
- bessere Kontrolle der Grenzwerte durch erweiterte Messprogramme,
- Aufstockung der Forschungsmittel bis 2005 auf insgesamt 8,5 Millionen Euro,
- jährliche Überprüfung der Einhaltung der Selbstverpflichtung auf der Basis eines unabhängigen Gutachtens.

In Schleswig-Holstein wurden im Auftrage des Staatlichen Umweltamtes messtechnische Ermittlungen hochfrequenter elektromagnetischer Felder an repräsentativen Orten durchgeführt. Das Gutachten belegt, dass die Messwerte für elektromagnetische Felder in der Nähe von Mobilfunk-, Fernseh-, Hörfunk- und Radaranlagen weit unter den gesetzlich vorgeschriebenen Grenzwerten liegen. Die höchsten Werte von unter 10 % des Grenzwertes wurden in der Nähe eines Mittelwellensenders und in unmittelbarer Umgebung von Mobilfunksendeanlagen wurden maximal 2 Prozent des Grenzwertes ermittelt.

-

¹ Bornschein, S. et. al.: Psychiatrische und somatische Morbidität bei Patienten mit vermuteter Multiple Chemical Sensivity (MCS). Der Nervenarzt 9 (2000), S. 737).

Das Gutachten kann unter http://www.umwelt.schleswig-holstein.de, Suchwort: Hochfrequenzfelder eingesehen und abgerufen werden.

Zur Problematik der elektromagnetischen Felder werden vom BfS verschiedene Pressemitteilungen, Jahresberichte, Publikationen und Informationsblätter herausgegeben, die in den Internetseiten des BfS (http://www.bfs.de) nachgelesen werden können:

- Handy im Auto am besten mit Außenantenne! Mobilfunk-Freisprecheinrichtungen mit Außenantenne sind strahlenhygienisch vorteilhaft 01/2001
- BfS beteiligt sich an der Bildungsmesse 09/2001
- Studie untermauert Vorsorgegedanken 11/2001
- Wissenschaftliche Fachtagung im BfS Forschung zum Mobilfunk wird verstärkt 50/2001
- Neues BfS-Faltblatt zum Thema "Mobilfunk und Sendetürme" 82/01
- Handy als Weihnachtsgeschenk. Was Sie wissen und beachten sollten 90/01

Das Bundesamt für Strahlenschutz hat Empfehlungen zum Telefonieren mit dem Handy (Abbildung 6.2) im Internet veröffentlicht. Handys strahlen hochfrequente elektromagnetische Felder zur Übertragung von Informationen aus, und das direkt am Kopf. Zur Zeit gibt es bei Einhaltung der Grenzwerte keine wissenschaftlichen Beweise für gesundheitliche Beeinträchtigungen durch das Telefonieren mit Handys. Vorsorge kann dadurch erreicht werden, wenn die elektromagnetischen Felder so gering wie möglich gehalten werden. Die Vorsorge ist sinnvoll, weil es noch offene Fragen über die gesundheitlichen Wirkungen der Felder gibt.

Quelle: BfS Strahlenthemen November 2001

Abbildung 6.2: Handybenutzung

Handelsübliche Handys erreichen zwischen 10 % bis 90 % des Grenzwertes. Die Hersteller von Handys werden ab Herbst 2001 die höchstmögliche Strahlungsintensität ihrer Geräte in der Gebrauchsanweisung ausweisen. Im Internet unter http://www.handywerte.de sind Tabellen mit den Strahlungsintensitäten von Handys verfügbar.

Das LAU wurde bereits 1999 vom MLU beauftragt, die Überprüfung der Anzeigeunterlagen im Hochund Niederfrequenzbereich gemäß § 7 der Verordnung über elektromagnetische Felder (26. BImSchV) für das Land Sachsen-Anhalt zu übernehmen. Die Anzeigeunterlagen sind auf Vollständigkeit und Plausibilität zu überprüfen. 2001 wurden keine Beanstandungen der Antragsunterlagen sowohl im Niederfrequenz- als auch im Hochfrequenzbereich festgestellt.

6.2 Licht

Licht kann zu schädlichen Umwelteinwirkungen im Sinne des BImSchG führen. Es treten hauptsächlich Belästigungen in Form von Raumaufhellung oder psychologischer Blendung auf. Als relevante künstliche Lichtquellen kommen z. B. Lichtwerbeanlagen oder Objektbeleuchtungsanlagen, Flutlichtanlagen an Sportstätten in Betracht. Auch Licht-/Schatteneinwirkungen durch Windkraftanlagen bei natürlicher Tageshelligkeit sowie Reflexionen von Sonnenlicht an baulichen Einrichtungen können zu Belästigungen führen.

Als Grundlage für die Gefährdungsermittlung von UV-Strahlung kann der vom Bundesamt für Strahlenschutz (BfS) (http://www.bfs.de/uvi/index.htm) täglich und regional vorhergesagte UV-Index verwandt werden. Der UV-Index ist der am Boden erwartete oder gemessene Tagesspitzenwert der sonnenbrandwirksamen UV-Strahlung. Von einer Gefährdung durch UV-Strahlung soll bei einem UV-Index von ≥ 5 ausgegangen werden (Tabelle 6.1).

Tabelle 6.1:	Schädigungsrisiken	der UV-Strahlung

UV-Index	Risiko für einen Sonnenbrand bzw. für eine Hautschädigung
0 - 2	minimal
3 - 4	gering
5 - 6	mittel
7 - 9	hoch
≥ 10	sehr hoch

Das Bundesamt für Strahlenschutz (BfS) weist darauf hin, dass die Haut zu Beginn der Schönwettersaison noch keinen ausreichenden Schutz aufgebaut hat. Zuviel UV-Strahlung schadet der Gesundheit. Ein erhöhtes Hautkrebsrisiko und frühzeitige Hautalterung sind die möglichen Folgen. Es wird daher dringend geraten, dem Sonnenschutz die nötige Aufmerksamkeit zu schenken und aktive Maßnahmen zu ergreifen. Intensive Sonnenstrahlung erfordert zusätzliche Schutzmaßnahmen wie Kopfbedeckung, lockere Sonnenschutzkleidung und Sonnenbrille. Die Haut sollte langsam an die Sonnenbestrahlung gewöhnt werden. Ausgedehnte Sonnenbäder sind nicht zu empfehlen, die Mittagsstunden sollten im Schatten verbracht werden. Generell sollten nicht mehr als 50 Sonnenbäder im Jahr genommen werden. Etwa eine halbe Stunde vor dem Sonnenbaden sind unbedeckte Körperpartien entsprechend dem persönlichen Hauttyp mit Sonnenschutzmitteln einzureiben, die einen ausreichend hohen Lichtschutzfaktor aufweisen.

Zur Problematik der UV-Strahlung werden vom BfS verschiedene Pressemitteilungen, Jahresberichte, Publikationen und Informationsblätter herausgegeben, die in den Internetseiten des BfS (http://www.bfs.de) nachgelesen werden können:

 "Solariumchecks" zur Risiko-Einschätzung – BfS, ADP und DKH gemeinsam gegen Hautkrebs – 73/01

Das BfS, die Arbeitsgemeinschaft Dermatologische Prävention e.V. (ADP) und der Deutschen Krebshilfe (DKH) vertreten die Auffassung, dass ultraviolette Strahlung ein erhebliches gesundheitliches Risiko darstellen kann. Betroffen davon sind vor allem Auge, Haut und auch das Immunsystem. Neben Sonnenbrand oder Bindehautentzündung geben mögliche langfristige Wirkungen wie Hautkrebserkrankungen sowie Linsentrübung des Auges Anlass zur Besorgnis. Diese schädlichen Wirkungen können auch bei künstlicher UV-Strahlung in Solarien auftreten. Um gesundheitliche Risiken zu vermeiden, sollte künstliche UV-Strahlung in Solarien vermieden werden. Jeder Solariumsnutzer sollte zur persönlichen Risikobewertung einen "Solariumcheck" durchführen und danach sein Vorhaben überdenken. Der Solariumcheck wurde gemeinsam vom BfS, der ADP und der DKH entwickelt. BfS, ADP und DKH geben den Bürgern darüber hinaus folgende Hinweise:

"Das Risiko von Solarienbesuchen lässt sich mindern, wenn nur Solarien aufgesucht werden, die den Anforderungen der Strahlenschutzkommission entsprechen.

Hautrötungen sind zu verhindern, indem die Bestrahlungsdauer begrenzt wird.

Es sollten keine Sonnenschutzmittel verwendet werden. Einige Stunden vor der Bestrahlung sind keine Duftstoffe zu verwenden und Kosmetika zu entfernen.

Während der Bestrahlung im Solarium ist eine Schutzbrille zu tragen.

Von einer Vorbräunung in Solarien, z.B. vor einem Urlaub, ist abzusehen."

7 Kurzfassung

Neue Luftqualitätsrichtlinien der Europäischen Union sehen zukünftig strenge Grenzwerte für die gesundheitlich relevante Feinstaubbelastung (Partikel PM10) vor. Der künftige Grenzwert (gültig ab 2005) für die Feinstaubbelastung von 50 µg/m³ (bei erlaubten 35 Überschreitungen) als Tagesmittelwert würde im Jahr 2001 an 3 von 16 LÜSA-Messstationen im Land Sachsen-Anhalt überschritten werden. An der verkehrsbezogenen Messstation in Magdeburg würde auch für Stickstoffdioxid der zukünftige strenge EU-Grenzwert (gültig ab 2010) von 40 µg/m³ als Jahresmittelwert überschritten.

An der Messstation Bernburg ist der Jahresmittelwert für Stickstoffdioxid von 32 μ g/m³ auf 22 μ g/m³ zurückgegangen. Dieser für eine Stadtgebietsstation hohe Wert im Jahr 2000 war durch die erhebliche Verkehrsbelastung der Bundesstraße B71 in unmittelbarer Nähe der Station verursacht worden. Im Jahr 2001 hat sich infolge der Eröffnung der Bundesautobahn A14 zwischen Magdeburg und Halle das Verkehrsaufkommen auf dieser Bundesstraße deutlich verringert und führte zu einem Rückgang der Stickstoffdioxidkonzentrationen um 31 %.

Die Auswertung der landesweiten Depositionsmessungen zeigte wiederum auffallende Gehalte an Schwermetallen im Raum Hettstedt, die im Vergleich zu anderen Messstellen deutlich erhöht sind. Hier werden die neueren Immissionswerte der novellierten TA Luft für Blei von 100 $\mu g/(m^2 d)$ an zwei Messstellen (Hettstedt, An der Brache und An der Bleihütte) leicht überschritten. Die strengeren Immissionswerte zum Schutze des Bodens für Kupfer werden an acht von elf Messstellen im Mansfelder Land teilweise erheblich überschritten, während die Immissionswerte für Cadmium, Chrom und Nickel eingehalten werden.

Hinsichtlich der Ozon-Belastung kommt es in den Sommermonaten nach wie vor zu Überschreitungen des Informationswertes für die Bevölkerung (180 Mikrogramm Ozon pro Kubikmeter Luft).

Im Jahr 2001 wurde der Ozon-Informationswert von 180 μ g/m³ an 5 Tagen überschritten; im Jahr 2000 kam es dagegen nur an 2 Tagen zu Überschreitungen. Die Anzahl der Tage mit Überschreitungen des Schwellenwertes zum Schutz der menschlichen Gesundheit (110 μ g/m³ als Achtstundenmittelwert) stieg im Vergleich zum Vorjahr an. Im Jahr 2001 waren es 63 Tage und im Jahr 2000 54 Tage (mit mindestens einer Station mit Überschreitungen).

Nach wie vor überschritten wird auch der Ozon-Schwellenwert zum Schutz der Vegetation (65 μ g/m³ als 24-Stundenmittelwert). Dies trifft insbesondere auf Gebiete außerhalb der Ballungsräume zu, wo allgemein höhere Ozonkonzentrationen auftreten.

Hauptursache für diese Überschreitungen sind die Emissionen der Ozon-Vorläufersubstanzen Stickstoffoxide und flüchtige Kohlenwasserstoffe aus den Bereichen des Straßenverkehrs und der Industrie.

Bei den Luftschadstoffemissionen aus dem Bereich des Straßenverkehrs führen zwei in der Wirkung gegensätzliche Entwicklungen zu weiter anhaltenden Belastungen. Der enormen Zunahme der absoluten Kraftfahrzeugzahlen seit 1990 und den weiter wachsenden Fahrleistungen stehen eine deutlich verbesserte Abgasreinigungstechnik in der Fahrzeugflotte sowie verbesserte Kraftstoffqualitäten gegenüber. Um die z. Zt. noch hohe Belastung mit Stickstoffoxiden sowie den krebserzeugenden Stoffen Benzol und Ruß in stark befahrenen und schlecht durchlüfteten Straßenschluchten auf ein verträgliches Maß zu senken, sind noch weitere technische Innovationen und deren Umsetzungen bei der Motorentechnik, der Fahrzeugtechnik, Kraftstoffqualität und der Verkehrsorganisation notwendig. So werden die vom Länderausschuss für Immissionsschutz vorgeschlagenen, auf die Vorsorge ausgerichteten Zielwerte für Benzol und Ruß nach wie vor überschritten. Der zukünftig geltende Grenzwert der EU-Tochterrichtlinie für Benzol würde jedoch auch im Straßenraum eingehalten werden.

Im Hinblick auf die industriellen Emissionen von Luftverunreinigungen ist nach Abschluss der Altanlagensanierungen und bedingt durch eine erhebliche Anzahl von Anlagenstilllegungen ein niedriges Niveau erreicht worden. Neue anlagenbezogene Rechtsvorschriften mit dem Ziel der weiteren Senkung der Emissionen von Luftschadstoffen erfordern von den Anlagenbetreibern in den nächsten Jahren weitere Sanierungsmaßnahmen, die wiederum zu einer Senkung der Immissionen führen werden.

Schwerpunkte der Emissionsminderung stellen dabei im Zusammenhang mit der Umsetzung europäischer Richtlinien die Begrenzung von Feinstaub (PM10), klimarelevanten Gasen und organischen Schadstoffen (VOC) dar.

Umfangreiche Maßnahmen zum Klimaschutz haben nach Aussagen des BMU in Deutschland zu einer Trendwende geführt. So sinken die verkehrsbedingten CO₂-Emissionen seit 1999 um jährlich zwei Prozent, bei den privaten Haushalten liegen sie um 11,5 % niedriger als 1990.

Für Sachsen-Anhalt betragen die CO₂-Emissionen im industriellen Bereich derzeit ca. 18,5 Mio. Tonnen. Hinzu kommen aus dem Bereich Verkehr ca. 4,8 Mio. Tonnen und aus dem Bereich Haushalte/Kleinverbraucher ca. 4,6 Mio. Tonnen CO₂.

Somit ergibt sich eine CO₂-Gesamtemission für Sachsen-Anhalt von ca. 27,9 Mio. Tonnen.

Bei sich erholenden wirtschaftlichen Aktivitäten und damit verbundenen steigendem Energieverbrauch ist speziell für Sachsen-Anhalt von einem weiteren Anstieg auszugehen.

Wesentliche Maßnahmen des Klimaschutzes sind die Energieeinsparung und der Umbau der Energiewirtschaft u.a. durch verstärkte Nutzung erneuerbarer Energien.

Die Windkraft ist die regenerative Nutzungsart mit der größten Entwicklungsdynamik im Land Sachsen-Anhalt. Allein im Jahr 2001 wurde ein Zubau um eine installierte Leistung von 300 MW und im Jahr 2002 bis zum 30.06.2002 bereits um 172 MW erreicht. Beginnend 1992 wurden bis zum 30.06.2002 in Sachsen-Anhalt 917 Anlagen mit 969 MW installierter Gesamtleistung errichtet. Damit nimmt Sachsen-Anhalt nach Niedersachsen, Schleswig-Holstein und Nordrhein-Westfalen den vierten Platz in Deutschland bezogen auf die installierte Leistung von Windenergieanlagen ein.

Seit 1991 werden auch in Sachsen-Anhalt repräsentative Umfragen zu Einstellungen der Bevölkerung u. a. zum Lärm durchgeführt. Die Ergebnisse 2001 der Befragungen in Sachsen-Anhalt verdeutlichen, dass im Belästigungserleben der Bürger weiterhin der Straßenverkehr die dominierende Geräuschquelle ist, gefolgt von Flugverkehr, Schienenverkehr, Industrie/Gewerbe und sonstige Quellen. Der Lärm stellt ein massives Gesundheits- und Umweltproblem dar und ist trotz technischer Maßnahmen seit Jahren kaum geringer geworden. Neben technischen und organisatorischen Maßnahmen zur Lärmminderung ist auch jeder Einzelne angesprochen, unnötigen Lärm zu vermeiden.

Im Aufgabenbereich Lärm und Erschütterungen des LAU wurden spezielle messtechnische Untersuchungen mit automatischen Messstationen zur Ermittlung und Beurteilung von Geräusch- und Erschütterungsimmissionen in Städten und Gemeinden im Einwirkungsbereich von Störquellen durchgeführt. In Auswertung dieser Untersuchungen konnten Maßnahmen zur Beseitigung bzw. Minderung der Belastungen vorgeschlagen und durch die zuständigen Behörden in die Wege geleitet werden.

Im Jahr 2001 wurde eine Untersuchung zur Lärmminderung durch eine Schallschutzwand im Urteil der Betroffenen durchgeführt, deren Aufgabenumfang vom LAU für diese Untersuchung erarbeitet wurde. Ziel der Untersuchung war, in welchem Maße der Bau der Schallschutzwand am Magdeburger Ring in Magdeburg die Belästigung der Anlieger reduziert und wie diese Lärmminderungsmaßnahme das Belästigungsurteil determiniert. Im Jahr 2000 wurden die akustischen Untersuchungen und die ersten Befragungen der betroffenen Anwohner abgeschlossen. 2001 erfolgte auch die Fertigstellung der Schallschutzwand. Die Untersuchungen werden im Jahr 2002 abgeschlossen.

Seit nunmehr 10 Jahren wurde für Städte in Sachsen-Anhalt die vorbereitende Lärmminderungsplanung (Schallimmissions-, Immissionsempfindlichkeits- und Konfliktpläne, Detailanalyse der Konfliktgebiete) unter fachlicher Unterstützung des LAU erarbeitet. Mit der Stadt Zerbst wurde diese Planung weitergeführt. 2000 wurde das vorhandene digitale Stadtmodell für die Erarbeitung der vorbereitenden Lärmminderungsplanung angepasst sowie vorbereitende Berechnungen und Darstellungen vorgenommen. Die abschließenden Berechnungen erfolgten im Jahre 2001 und Anfang 2002 wird es der Stadtverwaltung übergeben.

Elektromagnetische Felder (EMF) sind untrennbar mit der Erzeugung, Fortleitung und dem Verbrauch elektrischer Energie verbunden. In seiner Umgebung ist der Mensch ständig diesen Feldern ausgesetzt. In der Literatur wird vielfach der Verdacht bzw. die Vermutung geäußert, dass bei auftretenden gesundheitlichen Beschwerden im Sinne von Befindlichkeitsstörungen oder Erkrankungen elektromagnetische Felder die Ursache sein sollen, so dass in Deutschland in den nächsten Jahren die Forschung zu den Wirkungen von EMF, insbesondere für den Bereich des Mobilfunks verstärkt gefördert werden soll. Besondere Aufmerksamkeit wird auch der Vorsorge gewidmet.

Im Ergebnis der jährlichen Überprüfungen der Anzeigeunterlagen im Hoch- und Niederfrequenzbereich gemäß § 7 der Verordnung über elektromagnetische Felder (26. BlmSchV) auf Vollständigkeit und Plausibilität wird für 2001 eingeschätzt, dass keine Beanstandungen in Sachsen-Anhalt vorlagen.

Licht kann zu schädlichen Umwelteinwirkungen im Sinne des BImSchG führen. Es treten hauptsächlich Belästigungen in Form von Raumaufhellung oder psychologischer Blendung auf. Zur Minderung der Störwirkung von Lichtimmissionen haben sich technische und bauliche Maßnahmen sowie Verhaltensmaßnahmen (UV-Bestrahlung) bewährt. Wie in jedem Jahr wird insbesondere auf die schädli-

chen Umwelteinwirkungen im Sinne des BImSchG der natürlichen und künstlichen UV-Strahlung hingewiesen.

Eine weitere wichtige Aufgabe des Immissionsschutzes ist die Gewährleistung der Anlagensicherheit und die Störfallvorsorge. Hier kommt es darauf an, präventiv darauf hin zu wirken, dass die Zahl der Schadensereignisse/Störfälle wie in den letzten Jahren auf einem niedrigen Niveau verbleibt. Im Jahre 2001 wurden den Umweltschutzbehörden 7 Schadensereignisse bekannt, davon vier Fälle in genehmigungsbedürftigen Anlagen nach Bundes-Immissionsschutzgesetz.

Bei der Bestimmung umweltrelevanter Komponenten (Blei, Benzol, Methanol, Schwefel) in Brenn- und Treibstoffen wurde 2001 keine Überschreitung der geltenden Höchstgehalte und eine sinkende Tendenz bezüglich der Schwefel- und Benzolgehalte festgestellt.

Anhang

Tabellen

und

Abbildungen

Tabelle 1.6.1: Anlagenbezogene Messdurchführungen bekannt gegebener Stellen

Maintenance	Anlagenart/-bezeichnung	Zuordnui	ng nach	Einzel-	Kalibrie-	Funktions-
Kraftwerke	3			messungen	rungen	
Feuerungsanlagen			Spalte			
Feuerungsanlagen						
Feuerungsanlagen				10	1	3
Feuerungsanlagen			<u> </u>			
Feuerungsanlagen						
Verbrennungsmotorenanlagen			-		1	3
Verbrennungsmotorenanlagen						
Gasturbinenanlagen						
Gasturbinenanlagen 105 2 1 Anlagen zum Brechen, Mahlen, Klassieren von Gestein 202 2 4 Anlagen zur Zementherstellung 203 1 7 2 4 Anlagen zur Brennen von mineralischen Stoffen 204 2 5 5 Anlagen zum Mahlen von mineralischen Stoffen 208 1 2 2 2 Anlagen zur Herstellung von Glas 208 1 2 2 2 Anlagen zur Brennen keramischer 210 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1 2 2 1 <td< td=""><td></td><td></td><td></td><td>13</td><td></td><td></td></td<>				13		
Anlagen zum Brechen, Mahlen, Klassieren von Gestein Anlagen zur Zementhersteilung 203 1 7 2 4 4 5 5 5 5 5 5 5 5			<u> </u>		1	4
Sieren von Gestein						
Anlagen zur Zementherstellung 203		202	2	4		
Anlagen zum Brennen von mineralischen Stoffen Anlagen zum Mahlen von mineralischen Stoffen Anlagen zum Mahlen von mineralischen Stoffen Anlagen zum Herstellung von Glas Anlagen zum Brennen keramischer Z10 1 1 Erzeugnisse Bitumenschmelz-/Mischanlagen Z15 1 2 Bitumenschmelz-/Mischanlagen Z15 2 8 Bitumenschmelz-/Mischanlagen Z15 2 8 Anlagen zur Stahlerzeugung und zum Erschmelzen von Gusseisen/Stahl Anlagen zum Erschmelzen von Gusseisen/Stahl Anlagen zum Erschmelzen von Gusseisen Stahl Anlagen zum Erschmelzen von Gusseisen Stahl Anlagen zum Erschmelzen von Gusseisen Stahl Anlagen zum Erschmelzen von Gusseisen Grikke- gierungen Eisen-, Temper- und Stahlgießereien Gißereien für NE-Metalle 304 1 3 gierungen Eisen-, Temper- und Stahlgießereien 307 2 1 Gißereien für NE-Metalle 308 1 1 Anlagen zur Oberflächenbehandlung von Metallen Anlagen zur Oberflächenbehandlung von Metallen Anlagen zur Oberflächenbehandlung von Gegenständen mit Strahlmittel Anlagen zur Herstellung von anorganischen Chemikalien Anlagen zur Herstellung von Dünge- mitteln Anlagen zur Herstellung von Dünge- mitteln Anlagen zur Herstellung von Kunstschen Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunstschoffen oder Chemiefasern Anlagen zur Herstellung von Kohlen- wasserstoffen Anlagen zur Herstellung von Synthetischem Kautschuk Anlagen zur Herstellung von Synthetischem Kautschuk Anlagen zur Gerteitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501A 2 3 Lackier-/Trocknungsanlagen 501A 1		000	_	_		
schen Stoffen 205 2 1 Anlagen zum Mahlen von mineralischen Stoffen 205 2 1 Anlagen zur Herstellung von Glas 208 1 2 2 Anlagen zur Berstellung von Glas 208 1 2 2 Anlagen zur Bersennen keramischer Erzeugnisse 210 1 1 Erzeugnisse Bitumenschmelz-/Mischanlagen 215 1 2 2 8 Anlagen zur Stahlerzeugung und zum 303 1 2 1 2 1 2 1 2 1				· ·	2	4
schen Stoffen 2 2 Anlagen zur Herstellung von Glas 208 1 2 2 Anlagen zum Brennen keramischer 210 1 1 1 Erzeugnisse Bitumenschmelz-/Mischanlagen 215 1 2 Bitumenschmelz-/Mischanlagen 215 2 8 Anlagen zur Stahlerzeugung und zum Erschmelzen von Gusseisen/Stahl 303 1 2 1 2	schen Stoffen					
Anlagen zum Brennen keramischer Z10	schen Stoffen	205	2			
Erzeugnisse Bitumenschmelz-/Mischanlagen 215 1 2		208	1	2		2
Bitumenschmelz-/Mischanlagen 215 1 2 Bitumenschmelz-/Mischanlagen 215 2 8 Anlagen zur Stahlerzeugung und zum Erschmelzen von Gusseisen/Stahl 303 1 1 1 1 Anlagen zum Erschmelzen von Gusseisen Stahl 303 2 1 2 1 2 1 2 1 30 2 1 30 2 1 3		210	1	1		
Bitumenschmelz-/Mischanlagen 215 2 8 Anlagen zur Stahlerzeugung und zum 303 1 1 1 Erschmelzen von Gusseisen/Stahl 303 2 1 Anlagen zum Erschmelzen von Gusseisen oder Stahl 303 2 1 Schmelzanlagen für Zink oder Zinklegierein oder Stahl 304 1 3 Schmelzanlagen für Zink oder Zinklegierein oder Stahl 304 1 3 Schmelzanlagen für Zink oder Zinklegierein oder Stahl 304 1 3 Eisen-, Temper- und Stahlgießereien Gießereien 307 2 1 3 Gießereien für NE-Metalle 308 1 1 Anlagen zur Aufbringen metallischer Schutzschichten 309A 2 1 Anlagen zur Oberflächenbehandlung von Metallen 310 2 1 Anlagen zur Oberflächenbehandlung von Gegenständen mit Strahlmittel 401A 1 7 1 4 Anlagen zur Herstellung von Halogen zur Herstellung von Halogen zur Herstellung von Halogen zur Herstellung von Düngemitseln 401D 1 1 1 Anlagen zur Herstellung von Kunstst		215	1	2		
Anlagen zur Stahlerzeugung und zum Erschmelzen von Gusseisen/Stahl 303 1 1 1 1 1 1 1 1 1			2			
Anlagen zum Erschmelzen von Gusseisen oder Stahl 303 2					1	1
eisen oder Stahl 304 1 3 gerungen 304 1 3 gerungen 307 2 1 3 gerungen 307 2 1 3 4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Schmelzanlagen für Zink oder Zinklegierungen		303	2	1		
Eisen-, Temper- und Stahlgießereien 307 2 1 Gießereien für NE-Metalle 308 1 1 Anlagen zum Aufbringen metallischer Schutzschichten 309A 2 1 Anlagen zur Oberflächenbehandlung von Metallen 310 2 1 Anlagen zur Oberflächenbehandlung von Metallen 320 2 1 Anlagen zur Oberflächenbehandlung von Gegenständen mit Strahlmittel 401A 7 1 4 Anlagen zur Herstellung von anorganischen Chemikalien 401A 1 7 1 4 Anlagen zur Herstellung von Halogenen/Schwefel und -erzeugnissen 401D 1 1 1 2 Anlagen zur Herstellung von Düngemitteln 401E 1 3 1 2 2 Anlagen zur Herstellung von Kunstsoffen oder Chemiefasern 401H 1 1 3 1 1 3 1 1 4 4 4 1 4 4 4 4 1 4 1 4 4 4 1 4 4 4 </td <td>Schmelzanlagen für Zink oder Zinkle-</td> <td>304</td> <td>1</td> <td>3</td> <td></td> <td></td>	Schmelzanlagen für Zink oder Zinkle-	304	1	3		
Gießereien für NE-Metalle		307	2	1		
Anlagen zur Aufbringen metallischer Schutzschichten Anlagen zur Oberflächenbehandlung von Metallen Anlagen zur Oberflächenbehandlung von Gegenständen mit Strahlmittel Anlagen zur Herstellung von anorganischen Chemikalien Anlagen zur Herstellung von Halogenen/Schwefel und -erzeugnissen Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur Herstellung von Synthetischem Kautschuk Anlagen zur Gebrikmäßigen Herstellung von Kendlenwasserstoffen Anlagen zur Herstellung von Synthetischem Kautschuk Anlagen zur Gebrikmäßigen Herstellung von Arzneimitteln Anlagen zur Gebrikmäßigen Herstellung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501B 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2						
Schutzschichten Anlagen zur Oberflächenbehandlung von Metallen Anlagen zur Oberflächenbehandlung von Gegenständen mit Strahlmittel Anlagen zur Herstellung von anorganischen Chemikalien Anlagen zur Herstellung von Halogenen/Schwefel und -erzeugnissen Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasem Anlagen zur Herstellung von Kunststoffen oder Chemiefasem Anlagen zur Herstellung von Kunststoffen oder Chemiefasem Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur Ferstellung von Synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung Anlagen zur fabrikmäßigen Herstellung Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501A 2 3 1 2 1 401A 7 1 4 4 4 5 6 1 1 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						
Anlagen zur Oberflächenbehandlung von Metallen Anlagen zur Oberflächenbehandlung von Gegenständen mit Strahlmittel Anlagen zur Herstellung von anorganischen Chemikalien Anlagen zur Herstellung von Halogenen/Schwefel und -erzeugnissen Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur Ferstellung von synthetischem Kautschuk Anlagen zur Gabrikmäßigen Herstellung von Erdöl, Erzölerzeugnissen Lackier-/Trocknungsanlagen 501A 2 1 1 2 1 3 1 2 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 401H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		000/1	_	·		
Anlagen zur Oberflächenbehandlung von Gegenständen mit Strahlmittel Anlagen zur Herstellung von anorganischen Chemikalien Anlagen zur Herstellung von Halogenen/Schwefel und -erzeugnissen Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur Herstellung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501B 1 7 1 4 401D 1 1 1 2 401D 1 1 2 6 401E 1 3 1 1 2 7 1 1 4 9 401E 1 1 3 1 1 2 401H 1 1 1 5 401H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		310	2	1		
von Gegenständen mit Strahlmittel Anlagen zur Herstellung von anorganischer Chemikalien Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung von Avanzenimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501A 2 1 7 1 4 2 3 1 2 3 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1						
Anlagen zur Herstellung von anorganischen Chemikalien Anlagen zur Herstellung von Halogenen/Schwefel und -erzeugnissen Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur ferstellung von synthetischem Kautschuk Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501A 2 1 7 1 4 4 4 4 1 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Anlagen zur Oberflächenbehandlung	320	2	1		
Schen Chemikalien Anlagen zur Herstellung von Halogenen/Schwefel und -erzeugnissen Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von Synthetischem Kautschuk Anlagen zur Herstellung von Synthetischem Kautschuk Anlagen zur Gabrikmäßigen Herstellung von Arzneimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501A 2 1 1 2 401B 1 1 1 1 1 1 1 1 1 1 1 1	von Gegenständen mit Strahlmittel					
Anlagen zur Herstellung von Halogenen/Schwefel und -erzeugnissen Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501A 2 1 2 401B 1 1 1 1 1 1 1 1 1 1 1 1		401A	1	7	1	4
Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung von Arzneimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501B 1 6 1 1 1 1 1 1 1 1 2 1 401G 1 6 1 1 1 1 1 1 1 1 1 1 2 1 401H 1 1 1 1 1 1 1 1 1 1 1 1	Anlagen zur Herstellung von Halo-	401D	1	1		
Anlagen zur Herstellung von Düngemitteln Anlagen zur Herstellung organischer Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung von Arzneimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501B 1 6 1 1 1 1 1 1 1 1 2 1 401G 1 6 1 1 1 1 1 1 1 1 1 1 2 1 401H 1 1 1 1 1 1 1 1 1 1 1 1	genen/Schwefel und -erzeugnissen					
Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen Anlagen zur Verarbeitung von Erdöl, 501A 2 3 Lackier-/Trocknungsanlagen 501B 1 1		401E	1	3	1	2
Chemikalien/Lösungsmittel Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen Anlagen zur Verarbeitung von Erdöl, 501A 2 3 Lackier-/Trocknungsanlagen 501B 1 1		401G	1	6		1
Anlagen zur Herstellung von Kunststoffen oder Chemiefasern Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung von Arzneimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 401H 1 1 1 1 1 1 1 1 1 1 1 1	Chemikalien/Lösungsmittel					<u> </u>
Anlagen zur Herstellung von Kunstharzen Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung von Arzneimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 401K 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Anlagen zur Herstellung von Kunst-	401H	1	1		
Anlagen zur Herstellung von Kohlenwasserstoffen Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung von Arzneimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen 501A 2 3 Lackier-/Trocknungsanlagen 501B 1 1	Anlagen zur Herstellung von Kunst-	401K	1	5		1
Anlagen zur Herstellung von synthetischem Kautschuk Anlagen zur fabrikmäßigen Herstellung von Arzneimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen Lackier-/Trocknungsanlagen 501B 1 1 1 1 1 1 1 1 1 1 1 1	Anlagen zur Herstellung von Kohlen-	401L	1			1
Anlagen zur fabrikmäßigen Herstellung von Arzneimitteln Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen Lackier-/Trocknungsanlagen Lackier-/Trocknungsanlagen 501B 1 1	Anlagen zur Herstellung von syntheti-	401M	1	1		
von Arzneimitteln404186Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen404186Lackier-/Trocknungsanlagen501A23Lackier-/Trocknungsanlagen501B11						
Anlagen zur Verarbeitung von Erdöl, Erdölerzeugnissen		403B	2	1		
Lackier-/Trocknungsanlagen501A23Lackier-/Trocknungsanlagen501B11	Anlagen zur Verarbeitung von Erdöl,	404	1	8		6
Lackier-/Trocknungsanlagen 501B 1 1		501A	2	3		
DAMPINIAMONI 100 E U	Räucheranlagen	705	2	6		1

Anlagenart/-bezeichnung	Zuordnur 4. Blm	SchV	Einzel- messungen	Kalibrie- rungen	Funktions- prüfungen
	Nr.	Spalte			
Mühlen für Nahrungs- oder Futtermittel	721	1	1		
Mühlen für Nahrungs- oder Futtermittel	721	2	1		
Anlagen zur Trocknung von Grünfutter	725	2	2	1	1
Anlagen zum Rösten oder Mahlen von Kaffee	729	2	1		
Verbrennungsanlagen für feste oder flüssige Stoffe	801	1	2	1	2
Anlagen zum Abfackeln von Deponiegas	801	2	1		
Anlagen zur thermischen Behandlung edelmetallhaltiger Rückstände	803A	2	1		
Bodenbehandlungsanlagen	807	1	2		
Anlagen zur Behandlung besonders überwachungsbedürftiger Abfälle	810A	1	1		2
Anlagen zur Behandlung besonders überwachungsbedürftiger Abfälle	810A	2	2		
Anlagen zur Lagerung brennbarer Gase	910	1	1		
Anlagen zur Be- und Entladung von Schüttgütern	911	2	2		
Anlagen zur Reinigung von Werkzeugen	1020	2	2		

^{* -} entsprechend verwendeter Einsatzstoffe z.T. auch anderen Nummern des Anhangs zuordenbar

Tabelle 1.6.2: Emissionsmessungen des Landesamtes für Umweltschutz Sachsen-Anhalt 2001

lfd. Nr.	Anlagenart	Einsatzstoffe	Abgasreinigung	gemessene Schadstoffe	Messbeginn
1	Durchbrandofen	Baschkirische Braunkohlenbriketts	-	Staub, Hg	16.01.2001
2	Durchbrandofen	Lausitzer Braunkohlenbriketts	-	Staub, Hg	25.01.2001
3	Durchbrandofen	MIBRAG Braunkohlenbriketts	-	Staub, Hg	06.02.2001
	Anlage zur Herstellung von Bleiakkumulatoren (Raumab- saugung)	Bleiakkumulatoren	Taschenfilter	Staub	03.05.2001
5	Schachtofen	Steinkohlenkoks, Sekundärkupfer (Kupferschlacke Konverter, feinkörniges Kaufmaterial, Anodenkrätze, Messingkrätze, Kaufschlacke), Flussmittel (Eisenschrott, Kalksteinschotter), Filter-Additiv SORBALIT 35 T	Schlauchfilter, Adsorptionsfilter	SO ₂ , NO _x , CO, HCI, Staub, PCB, PCDD/F, C-gesamt	07.05.2001
6	Anlage zur Herstellung von Zement	Einsatzstoffe: Kalkstein, Bauxit, Sand, Kiesbrand, Letten, Flugasche Brennstoffe: Braunkohlenstaub, Ersatz- brennstoffe, Heizöl EL (Anfahrbetrieb)	EGR	Staub, fraktionierte Staubmessung, Cadmium, Chrom, Kupfer, Eisen, Mangan, Nickel, Blei, Zinn, Thallium, Zink	14.05.2001
	chemikalien, Fertig- parfümmischungen	Essigsäure, Essigsäureanhydrid, Ätznatron, Methanol, Methylethylketon (MEK), Citral, Cyclohexan, Diacetyl, Phosphorsäure, Methylionon, Pseudo-Methylionon, Ethanol, 2-Methylbuttersäure, Polyethylenglykol	Abluftwäscher, Biofilter	Geruchsemissionen	19.09.2001
8	Anlage zum Brennen von Keramik (Tunnelofen)	Ton, Erdgas	-	SO ₂ , NO _x , CO, HF	27.11.2001

Tabelle 2.1, Blatt 1: Messstationen des LÜSA (Stand: Dezember 2001)

Stationstyp	Stations- kürzel	Ort	Straße	Exposition	Rechtswert	Hochwert
Stadtgebiet	SWOO	Salzwedel	Tuchmacherstr.	Gewerbegebiet	444444	585838
Hintergrund	ZUWA	Zartau/Waldstation		Freifläche im Wald	444410	582920
Stadtgebiet	SLSO	Stendal	Nachtigalplatz	Altbauwohngebiet	449020	582950
Stadtgebiet	BUCO	Burg	Flickschupark	Stadtrandgebiet	449090	579175
Stadtgebiet	MGSO	Magdeburg/Südost	Schönebecker Str.	Altbauwohngebiet	447556	577447
Verkehr	MGVC	Magdeburg/Verkehr	Damaschkeplatz	Verkehrsstation	447435	577766
Stadtgebiet	MGWW	Magdeburg/West	Hans-Löscher-Str.	Altbauwohngebiet	447345	577718
Histor. Einzel.	MGCO	Magdeburg/Zentr Ost	Wallonerberg	Stadtgebiet	447590	577790
Stadtgebiet	HTCC	Halberstadt	Paulsplan	Stadtgebiet	443520	575188
Stadtgebiet	WENN	Wernigerode	Bahnhofsvorplatz	Stadtgebiet	441670	574574
Hintergrund	BROC	Brocken		Brockengipfel	440465	574140
Hintergrund	HZNN	Harzgerode	Freie Feldlage	Freifläche im Wald	444113	572510
Stadtgebiet	BECO	Bernburg	Platz der Jugend	Stadtrandgebiet	448208	574117
Stadtgebiet	DECN	Dessau	Lessingstr.	Stadtrandgebiet	451745	574551
Verkehr	DEVN	Dessau/Albrechtsplatz	Zerbster Str.	Verkehrsstation	451696	574520
Stadtgebiet	WGCC	Wittenberg	Zimmermannstr.	Altbauwohngebiet	454500	574871
Industrie	GRNN	Greppin	Schrebergartenstr.	Stadtrandgebiet	452105	572413
Stadtgebiet	BDCC	Bitterfeld	Lindenstr.	Stadtgebiet	452238	572100
Industrie	PHNN	Pouch	Mühlbecker Landstr.	Freilandstation	452700	572170
Stadtgebiet	HSCS	Hettstedt	Am Mühlgraben	Stadtgebiet	446628	572320
Stadtgebiet	HENN	Halle/Nord	Schleiermacherstr.	Altbauwohngebiet	449866	570686
Stadtgebiet	HEOO	Halle/Ost	Reideburger Str.	Gewerbegebiet	450043	570558
Stadtgebiet	HESW	Halle/Südwest	Zeitzer Str.	Neubauwohngebiet	449820	570025
Verkehr	HEVC	Halle/Verkehr	Merseburger Str.	Verkehrsstation	449895	570452
Industrie	SUSS	Schkopau	Ludwig-Uhland-Str.	Altbauwohngebiet	449888	569468
Industrie	LASO	Leuna	Kreypauerstr./Sportpl.	Stadtgebiet	450233	568742
Verkehr	WSVC	Weißenfels/Verkehr	Promenade	Verkehrsstation	449828	567410
Stadtgebiet	NGOO	Naumburg	Graf-Staufenberg-Str.	Altbaumischgebiet	448737	566907
Stadtgebiet	ZZCC	Zeitz	Freiligrathstr.	Altbauwohngebiet	451001	565774

Mobile Kleinmessstationen des LÜSA

Stationstyp	Stations- kürzel	Ort	Straße	Exposition	Rechtswert	Hochwert
Mobile	M202	Wolmirstedt/OT Elbeu ¹	Magdeburger Str.	Verkehrsstation	447414	578953
Klein-	M102	Aschersleben	GeschwScholl-Str.	Verkehrsstation	446270	573615
Messstation	M201	Sangerhausen ²	Mühlgasse	Verkehrsstation	445100	570450
	M002	Wittenberg/Verkehr	Dessauer Str.	Verkehrsstation	454134	574833

¹ Messbeginn am 12.10.2001 2 Messende am 08.10.2001

Tabelle 2.1, Blatt 2: Komponentenausstattung des LÜSA

Stations- kürzel	Betrieb- Nahme	SO ₂	NO NO ₂	СО	CO ₂	O ₃	H ₂ S	Staub	PM 10	WG WR	LT	Feu	LD	NS	GSTR	UVA UVB	B T X	R u ß	P A H	SM
SWOO	1994	+	+	+		+		+		+	+	+	+		+	+				
ZUWA	1997	+	+	+		+			+	+	+	+	+	+	+					
SLSO	1992	+	+	+		+			+	+	+	+	+	+	+					
BUCO	1993	+	+	+		+			+	+	+									
MGSO	1992	+	+	+		+			+	+	+	+	+	+	+	+				
MGVC	1993		+	+		+			+								+	+	+	
MGWW	1993	+	+	+				+									+			
MGCO	1977	+	+						+											+
HTCC	1992	+	+	+		+		+		+	+	+	+	+	+					
WENN	1990	+	+	+		+			+	+	+	+	+	+	+					
BROC	1996	+	+		+	+														
HZNN	1993	+	+	+		+		+		+	+	+			+	+				
BECO	1992	+	+	+					+	+	+	+	+	+	+		+			
DECN	1992	+	+	+		+		+		+	+	+	+	+	+					
DEVN	2001		+	+		+			+								+	+		
WGCC	1992	+	+	+		+			+	+	+	+	+	+	+					
GRNN	1990	+	+	+		+	+		+	+	+	+	+	+	+					
BDCC	1993	+	+	+		+			+											
PHNN	1993	+	+	+		+			+	+	+	+		+	+	+				
HSCS	1992	+	+	+		+		+		+	+	+	+	+	+					
HENN	1992	+	+	+		+		+		+	+	+	+	+	+	+	+			
HEOO ¹	1993	+	+	+		+			+2	+						+				
HESW	1993	+	+	+				+		+	+									
HEVC	1993	+	+	+					+								+	+		+
SUSS	1993	+	+	+					+	+	+									
LASO	1998	+	+	+		+	+	+	+	+	+	+	+		+		+	+		
WSVC	1993	+	+	+					+								+	+		
NGOO	1992	+	+	+		+			+	+	+									
ZZCC	1992	+	+	+		+		+		+	+	+	+	+	+					

Komponentenausstattung der Mobilen Kleinmessstationen des LÜSA

Stations- kürzel	In- betrieb-	_	NO NO ₂		CO ₂	O ₃	H ₂ S	Staub	PM 10	WG WR	LT	Feu	LD	NS	GSTR	UVA UVB	B T	R u	P A	SM
	nahme																Χ	ß	Н	
M202	2001		+														+	+		
M102	2000		+						+								+	+		
M201	1999		+														+	+		
M002	1996		+	+					+								+	+		

SO ₂	Schwefeldioxid	LT	Lufttemperatur	SM	Schwermetalle im Schwebstaub
NO	Stickstoffmonoxid	Feu	Feuchte		(Blei, Cadmium, Vanadium,
NO_2	Stickstoffdioxid	NS	Niederschlag		Chrom, Mangan, Nickel)
CO	Kohlenmonoxid	GSTR	Globalstrahlung	WR	Windrichtung
CO_2	Kohlendioxid	UVA	UVA-Strahlung	WG	Windgeschwindigkeit
O_3	Ozon	UVB	UVB-Strahlung	PM2,5	Partikel (d < 2,5 µm)
H_2S	Schwefelwasserstoff	BTX	Benzol, Toluol, Xylole		
NH_3	Ammoniak	PAH	Polyzyklische aromatische Ko	ohlenwass	serstoffe
Staub	Schwebstaub	PM10	Partikel (d < 10 µm)		

104

¹ Zusätzlich werden an einem Gittermast folgende Komponenten gemessen: $O_3(10m)$, $O_3(20m)$, $O_3(30m)$, $O_3(40m)$, $O_3(gesamt)$, WR(vertikal), LT(40m), Feu(40m) 2 auch PM2,5

Verfügbarkeit der LÜSA-Messdaten in Prozent im Jahr 2001 Tabelle 2.2:

	SO ₂	NO	NO_2	СО	O ₃	Stb	PM	PM	Ben-	То-	Ху-	E-	m-	0-	p-	Ruß	CO ₂	H ₂ S
							10	2.5	zol	luol	lole	Ben.	Xyl.	Xyl.	Χyl.			
Aschersleben		97	97						71	75	75	74	75	75	75	67		
Bernburg	97	92	92	96			97		93	93	90	92	92	92	92			
Bitterfeld	90	89	89	88	96		91											
Brockenstation	96	97	98		98												94	
Burg	96	97	97	89	98	95 ¹	96 ²											
Dessau	96	97	97	96	98	98												
D./Albrechtsplatz		96	96	95	96		100		89	85	85	82	88	88	88	97		
Greppin	94	94	94	90	96	97 ³	98 ⁴											94
Halberstadt	93	97	97	97	98	95												
Halle/Nord	97	97	97	95	97	97			91	91	91	90	91	91	89			
Halle/Ost	97	97	97	95	97		98	72										
Halle/Südwest	96	97	97	94		95												
Halle/Verkehr	97	97	97	97			99		93	93	93	95	95	95	95	100		
Harzgerode	96	96	97	95	97	91												
Hettstedt	95	98	98	97	98	97												
Leuna	97	97	97	93	97	92	99 ⁵		90	90	80	91	80	81	81	99		97
MD/Südost	96	97	97	96	96		90											
MD/Verkehr		93	93	94	94				90	90	83	88	84	90	90	95		
Magdeburg/West	95	97	97	97	98	96			84	84	83	83	85	82	82			
MD/Zentrum-Ost	97	98	98															
Naumburg	97	98	98	96	97		98											
Pouch	95	96	96	93	96	95 ⁶	97 ⁷											
Salzwedel	96	96	97	95	97	94												
Sangerhausen/V.		95	95						84	91	91		91	91	91	92		
Schkopau	96	98	98	93		98 ⁸	96 ⁹											
Stendal	96	90	90	96	97		95											
Weißenfels/V.	97	97	97	98			99		94	94	93	96	94	94	93	85		
Wernigerode	96	96	96	97	96		94											
Wittenberg	96	97	97	96	97		96											
Wittenberg/V.		97	97	95		95			90	90	89							
Wolmirstedt/OT E.		98	98						94	97	98	98	98	98	98	99		
Zartau/Waldmess.	96	87	87	95	98		97											
Zeitz	97	96	96	98	98	97												

^{1 ...}bis 11.06.2001 2 ...ab 12.06.2001 3 ...bis 03.09.2001 4 ...ab 12.09.2001 5 ...ab 13.09.2001 parallel zu Schwebstaub 6 ...bis 31.07.2001 7 ...ab 01.08.2001 8 ...bis 31.07.2001 9 ...bis 31.07.2001

Jahreskenngrößen Ozon 2000 und 2001 in $\mu g/m^3$ Tabelle 2.3:

	Jahresmitte	elwerte (I1)	98-Perzentile (I2)				
Messstation	2000	2001	2000	2001			
Salzwedel	44	44	115	110			
Zartau	47	45	122	112			
Brockenstation	74	77	139	149			
Harzgerode	56	56	125	125			
Pouch	50	48	128	120			
Stendal	42	41	113	104			
Burg	44	43	127	118			
Magdeburg/Südost	42	42	116	115			
Magdeburg/West ¹⁾		(44)		(122)			
Halberstadt	46	47	112	118			
Wernigerode	49	48	115	113			
Dessau	42	43	119	118			
Wittenberg	46	45	125	121			
Greppin	45	43	121	117			
Bitterfeld	(45)	43	(130)	120			
Hettstedt	41	43	113	114			
Halle/Nord	43	45	113	118			
Halle/Ost	42	42	115	119			
Leuna	46	44	126	120			
Naumburg	45	44	118	120			
Zeitz	42	43	114	117			
Magdeburg/Verkehr	24	23	83	75			
Dessau/Albrechtsplatz ²⁾		(35)		(95)			

^{(...) ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte $\overset{1)}{\dots}$... Messbeginn 09.04.2001 $\overset{2)}{\dots}$... Messbeginn 26.02.2001

Anzahl der Tage mit Überschreitung des Schwellenwertes von Ozon mit 180 $\mu g/m^3$ zur Information der Bevölkerung 2000 und 2001 Tabelle 2.4:

	Anzahl der Tage mit Überschreitungen des Informa tionswertes (180 μg/m³)							
Messstation	2000	2001						
Salzwedel	1	0						
Zartau	1	0						
Brocken	2	4						
Harzgerode	0	1						
Pouch	1	0						
Stendal	0	0						
Burg	0	0						
Magdeburg/Südost	0	0						
Magdeburg/West ¹⁾		(0)						
Halberstadt	0	0						
Wernigerode	1	0						
Dessau	0	0						
Wittenberg	1	1						
Greppin	1	0						
Bitterfeld	(1)	0						
Hettstedt	0	1						
Halle/Nord	1	0						
Halle/Ost	0	0						
Leuna	1	2						
Naumburg	1	0						
Zeitz	1	0						
Magdeburg/Verkehr	0	0						
Dessau/Albrechtsplatz ²⁾		(0)						

^{(...) ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte $\overset{1)}{\dots}$... Messbeginn 09.04.2001 $\overset{2)}{\dots}$ Messbeginn 26.02.2001

Tabelle 2.5: Anzahl der Überschreitungen des Schwellenwertes von Ozon zum Gesundheitsschutz von 110 μg/m³ (8h-Mittelwert) 2001

Messstelle		Anzahl der	8h-Mittelwerte	>110 µg/m³	
	16 - 0 Uhr	0 - 8 Uhr	8 - 16 Uhr	12 - 20 Uhr	Gesamt
Bitterfeld	14	0	6	26	46
Brocken	50	36	38	67	191
Burg	9	0	8	25	42
Dessau	7	0	4	23	34
Dessau/Albrechtsplatz	1	0	1	3	5
Greppin	9	0	5	24	38
Halberstadt	11	1	6	24	42
Halle/Nord	8	0	4	26	38
Halle/Ost	11	0	3	28	42
Harzgerode	20	0	13	34	67
Hettstedt	5	0	1	19	25
Leuna	11	0	7	27	45
Magdeburg/Südost	12	0	4	20	36
Magdeburg/Verkehr	0	0	0	0	0
Magdeburg/West	8	0	5	20	33
Naumburg	8	0	5	25	38
Pouch	15	0	8	26	49
Salzwedel	7	0	5	18	30
Stendal	4	0	2	13	19
Wernigerode	6	0	7	18	31
Wittenberg	15	0	6	31	52
Zartau	7	0	9	19	35
Zeitz	2	0	7	24	33

Tabelle 2.6: Anzahl der Überschreitungen des Schwellenwertes von Ozon zum Schutz der Vegetation von 65 μg/m³ von 1994 bis 2001 (24h-Mittelwert, 1h-gleitend)

Messstelle	1994	1995	1996	1997	1998	1999	2000	2001
Amsdorf	-	-	-	1644	1602	-	-	-
Bad Dürrenberg	1634	726	1127	1217	1025	1766	1172	-
Bitterfeld							1288	1599
Bernburg	1163	673	344 ¹	-	-	-	-	-
Brocken	-	-	3701	3894	4150	6370	5051	5599
Burg	-	-	1056	1699	1563	2022	1468	1444
Dessau	1621	1632	1325	1419	1444	1971	1365	1385
Dessau/Albrechtsplatz	-	-	=	-	-	-	-	382
Dessau/Verkehr	-	-	124	255	125	470	594	-
Eisleben	1709	1580	1195	1099	1484	-	-	-
Genthin	1782	1551	1296	1761	1270	1988	-	-
Greppin	1979	1296	1462	1661	1657	2131	1704	1640
Halberstadt	2034	1637	1644	1522	1322	1772	1324	1787
Halle/Nord	1282	1163	958	1460	1537	1375	1217	1598
Halle/Ost	2176	1809	1413	2029	1626	1930	1292	1271
Halle/Zentrum	1362	1029	502	467	831	1285	830	-
Harzgerode	2132	2866	2554	2836	2293	3533	2570	2849
Hettstedt	2057	1338	855	932	1313	1625	1167	1159
Köthen	2002	1487	1173	811	1391	-	-	-
Leuna	-	-	-	-	-	1656	1763	1469
Magdeburg/Südost	1821	1576	1142	1194	1255	1842	1236	1287
Magdeburg/Verkehr	-	70	168	195	55	218	202	51
Magdeburg/West	-	-	-	-	-	-	-	1122
Magdeburg/Zentrum	1078	914	832	871	733	1813	1117	-
Merseburg	1823	1162	904	1202	1310	1822	-	-
Naumburg	-	-	-	607 ²	1332	1375	1532	1323
Pouch	2369	1846	2106	2202	2148	3104	2132	1836
Quedlinburg	2212	1585	1414	1587	1439	-	-	-
Salzwedel	1126 ³	1541	1504	1566	1065	2181	1213	1427
Sangerhausen	1122 ⁴	1537	1019	1088	1145	1697	-	-
Schönebeck	1584	909	1252	1367	1423	1705	1108	-
Stendal	888	1137	1090	1107	892	1643	1157	971
Weißenfels	1641	755	901	1334	-	-		-
Wernigerode	2879	2287	1661	2675	2022	2634	1618	1817
Wittenberg	1670	2011	1611	2196	1736	2129	1749	1955
Zartau	-	-	-	-	1406	2144	1665	1518
Zeitz	1760	915	980	942	860	1530	985	1185
Zerbst	1620	888	1148	1414	1101	-	-	-
Summe ⁵	24668	21513	18801	22175	20105	27219	19516	20740

¹ Messbetrieb bis 23.06.1997

² Messbetrieb seit 24.06.1997

³ Messbeginn 11.04.1994 ⁴ Messbeginn 03.06.1994

In die Berechnung werden nur vollständige Zeitreihen ohne eingeschränkte Verfügbarkeit sowie gleiche Stationskollektive in den einzelnen Jahren aufgenommen

Tabelle 2.7: Anzahl der Tage mit Überschreitungen des Schwellenwertes zum Gesundheitsschutz (120 μg/m³) für Ozon

			Tage mit Übers			
	1007		gleitende Ach			I Marie I
Station	1997	1998	1999	2000	2001	Mittel (dreijährig)
Brocken	43	47	49	35	51	45
Pouch	27	23	38	25	19	27
Harzgerode	32	27	31	24	26	27
Burg	27	22	31	27	19	26
Bad Dürrenberg	17	13	25	-	-	25
Wittenberg	22	22	24	22	22	23
Genthin	24	14	22	-	-	22
Merseburg	17	15	22	-	-	22
Zartau		21	29	21	16	22
Greppin	20	17	26	22	17	22
Dessau	17	18	26	19	19	21
Bitterfeld	-	-	-	(21)	21	21
Leuna	-	-	22	24	17	21
Halle/Ost	33	18	27	15	17	20
Magdeburg/Zentrum	8	10	22	15	-	19
Magdeburg/West	-	-	-	-	(18)	18
Sangerhausen	8	18	18	-	-	18
Naumburg	8	17	15	20	18	18
Hettstedt	11	14	21	17	14	17
Zeitz	21	19	21	14	17	17
Salzwedel	21	17	22	16	13	17
Halberstadt	16	15	18	15	17	17
Halle/Zentrum	6	12	18	15	-	17
Wernigerode	23	19	18	17	14	16
Magdeburg/Südost	7	14	16	16	16	16
Halle/Nord	18	21	16	14	16	15
Schönebeck	15	13	15	13	-	14
Stendal	5	12	12	14	7	11
Dessau/Verkehr	2	0	0	(5)	-	3
Magdeburg/Verkehr	0	1	0	3	0	2
Dessau/Albrechtsplatz	-	-	-	-	(0)	

 $^{(\}ldots)$ \ldots Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.8: AOT40-Werte in (μg/m³)h ausgewählter LÜSA-Messstationen

Station	1995	1996	1997	1998	1999	2000		Mittel (fünfjährig)
AOT40-Werte zum Schutz der Vegetation ¹								
Brocken	-	18696	17223	25149	17401	19089	27990	21370
Harzgerode	22190	14729	15896	15083	16858	14776	15953	16513
Pouch	12052	14604	13327	15173	19400	15587	11906	15079
Salzwedel	12705	8161	8942	8064	14875	11358	9328	10513
Zartau	-	-	-	11443	14825	14099	11256	13393

1 ... April bis Juli

Jahreskenngrößen Stickstoffmonoxid und Stickstoffdioxid 2000 und 2001 in $\mu g/m^3$ Tabelle 2.9:

		ahresmitte					entile (I2)	
Maria de Cara	N			O ₂	N			O_2
Messstation	2000	2001	2000	2001	2000	2001	2000	2001
Salzwedel	1,9 ¹⁾	1,9 ¹⁾	12	13	23	17	36	34
Zartau (MLU 2000AU)	1,3	(0,8)	7,1	(6,3)	12	(5,8)	24	(23)
Brockenstation (TE 42 C)	0,5	0,9	4,9	4,7	3,7	5,7	17	17
Harzgerode (TE 42 C)	0,4	0,5	5,8	6,3	3,0	4,1	19	22
Pouch	1,9 ¹⁾	1,9 ¹⁾	14	16	21	23	38	49
Stendal	9,2	(9,1)	18	(20)	61	(46)	46	(46)
Burg	4,7	3,8	16	15	46	39	47	42
Magdeburg/Südost	6,9	6,4	19	18	59	49	48	46
Magdeburg/West	6,8	5,7	21	21	65	51	54	53
Magdeburg/Zentrum-Ost	7,2	7,1	19	21	55	50	47	52
Halberstadt	5,3	4,5	14	16	58	48	43	44
Wernigerode	(6,9)	6,2	(16)	16	(47)	46	(46)	44
Bernburg	45	17	32	22	204	88	77	52
Dessau	5,2	1,9 ¹⁾	15	15	46	31	44	40
Wittenberg	4,0	1,9 ¹⁾	16	15	34	26	41	38
Greppin	4,4	4,1	16	17	36	31	44	42
Bitterfeld	4,5	(1,9)	17	(18)	33	(29)	44	(43)
Hettstedt	5,0	4,8	15	16	45	44	43	44
Halle/Nord	6,9	5,9	19	19	63	57	52	55
Halle/Ost	5,0	4,9	18	18	48	47	44	49
Halle/Südwest	1,9 ¹⁾	1,9 ¹⁾	14	15	36	35	43	45
Schkopau	7,4	6,2	18	19	57	54	47	47
Leuna	4,4	3,8	15	16	39	33	42	43
Naumburg	7,7	7,0	18	17	64	57	47	46
Zeitz	3,9	1,9 ¹⁾	15	15	40	34	40	39
Magdeburg/Verkehr	59	57	34	41	214	216	72	78
Aschersleben		62		36		222		80
Dessau/Albrechtsplatz		(30)		(29)		(128)		(62)
Wittenberg/Verkehr	78	75	32	33	310	328	83	83
Halle/Verkehr	46	38	35	34	220	175	75	74
Sangerhausen/Mühlgasse	84	(62)	37	(32)	316	(261)	80	(71)
Weißenfels/Verkehr	(59)	46	(34)	30	(276)	180	(82)	67

^{(...) ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

1... Kenngröße kleiner als die Nachweisgrenze des Gerätes, deshalb lt. Definition gleich der halben Nachweisgrenze gesetzt.

Tabelle 2.10: Kenngrößen für Blei im Schwebstaub und Stickstoffdioxid in μg/m³ zur Berichterstattung an die EU-Kommission gemäß der 22. BlmSchV vom 26.10.1993, zuletzt geändert am 27.5.1994

		01.01.2001 bi	is 31.12.2001	
Luftverunreinigung	Blei		NO ₂	
Messstation	Mittelwert	Mittelwert	Median	98-Perzentil
Salzwedel		13	11	34
Zartau (MLU 2000AU)		(6,3)	(4,7)	(23)
Brockenstation (TE 42 C)		4,7	3,6	17
Harzgerode (TE 42 C)		6,3	4,9	22
Pouch		16	13	49
Stendal		(20)	(18)	(46)
Burg		15	12	42
Magdeburg/Südost		18	16	46
Magdeburg/West		21	19	53
Magdeburg/Zentrum-Ost	0,02	21	19	52
Halberstadt		16	13	44
Wernigerode		16	13	44
Bernburg		22	20	52
Dessau		15	13	40
Wittenberg		15	13	38
Greppin		17	15	42
Bitterfeld		(18)	(16)	(43)
Hettstedt		16	13	44
Halle/Nord		19	15	55
Halle/Ost		18	16	49
Halle/Südwest		15	12	45
Schkopau		19	17	47
Leuna		16	14	43
Naumburg		17	15	46
Zeitz		15	13	39
Magdeburg/Verkehr		41	40	78
Aschersleben		36	33	80
Dessau/Albrechtsplatz		(29)	(28)	(62)
Wittenberg/Verkehr		33	28	83
Halle/Verkehr	0,02	34	32	74
Sangerhausen/Mühlgasse		(32)	(30)	(71)
Weißenfels/Verkehr		30	29	67

 $^{(\}ldots)\ldots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.11, Blatt 1: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Stickstoffdioxid

Komponente	Stickstoffdid	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/1 h					
Wert	290 µg/m³					
Wertigkeit		+ Toleranzma	arge (GW+TM	<i>I</i>) 2001		
Überschreitungen zulässig pro		roioranzine	arge (OVV TIV	1) 2001		
Station und Jahr	18					
Zeit	1996	1997	1998	1999	2000	2001
Messstelle/Anzahl	n	n	n	n	n	n
Amsdorf		0	(0)			
Aschersleben			(0)			0
Bad Dürrenberg	(0)	0	0	0	0	Ŭ
Bernburg	0	0	0	0	0	0
Bernburg/Verkehr	(0)		<u> </u>	<u> </u>		
Bitterfeld	0	0	0	0	0	(0)
Blankenburg	(0)					(0)
Brockenstation	(0)	(0)	0	0	0	0
Burg	0	0	0	0	0	0
Dessau	0	0	0	0	0	0
Dessau/Verkehr	0	0	0	0	(0)	5
Dessau/Albrechtsplatz	 	J	"	-	(0)	(0)
Eisleben	0	0	0			(0)
Genthin	0	0	0	0	0	
Greppin	(0)	0	0	0	0	0
Halberstadt	0	0	0	0	0	0
Halle/Nord	0	0	0	0	0	0
Halle/Ost	(0)	0	0	0	0	0
Halle/Südwest	0	0	0	0	0	0
Halle/Verkehr	0	0	0	0	0	0
Halle/Zentrum	0	0	0	0	0	U
Harzgerode	0	0	0	0	0	0
Hettstedt	(0)	0	0	0	0	0
Köthen	0	0	0	0	0	0
Leuna	 	0	0	(0)	0	0
Magdeburg/Reuter-Allee				(0)	(0)	0
Magdeburg/Südost	0	(0)	0	0	0	0
Magdeburg/Verkehr	0	0	0	0	0	0
	0	0	0	0	0	0
Magdeburg/Vest	0	0	0	0	(0)	0
Magdeburg/Zentrum-Ost	0	0	0	0	0	U
Magdeburg/Zentrum						
Merseburg Naumburg	0	0	0	0	0	0
	0	0	0	0	0	0
Pouch Quedlinburg	0	0	(0)	U	U	U
Salzwedel	0	0	0	0	0	0
						U
Sangerhausen	0	0	0	0	0	(0)
Sangerhausen/Verkehr ¹	0	0	0	0	0	(0)
Schkopau			0	0		0
Schönebeck	0	0	0	0	0	(0)
Stendal			U	U	U	(0)
Weißenfels Weißenfels/Verkehr	2	(0)	(0)		(0)	0
		(0)	(0)	0	(0)	0
Wernigerode	(0)	0	0	0	(0)	0
Wittenberg	(0)	(0)	0	0	0	0
Wittenberg/Verkehr	1 2	0	0	0	0	0
Wolfen	0	0	0	0	0	(0)
Zartau/Waldmessstation			0	0	0	(0)
Zeitz	0	0	0	0	0	0
Zerbst	0	0	0			

114

n - Anzahl der Überschreitungen pro Station und Jahr () ... Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

¹ Messende am 08.10.01

Tabelle 2.11, Blatt 2: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Stickstoffdioxid

Komponente	Stickstoffdic	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/1 h					
Wert	200 µg/m³					
Wertigkeit		GW) gültig a	b 01.01.2010	<u> </u>		
Überschreitungen zulässig pro		OVV) guilig a	5 01.01.2010	<u>'</u>		
Station und Jahr	18					
Zeit	1996	1997	1998	1999	2000	2001
Messstelle/Anzahl	n	n	n	n	n	n
Amsdorf	- 11	0	(0)	11	- 11	11
Aschersleben		0	(0)			0
Bad Dürrenberg	(0)	0	0	0	0	0
Bernburg	3	7	0	0	0	0
Bernburg/Verkehr	(0)	,	0	0	0	0
Bitterfeld	0	0	0	0	0	(0)
	_	U	U	U	U	(0)
Blankenburg	(0)	(0)	0	0		0
Brockenstation	(0)	(0)	0	0	0	0
Burg	0	0	0	0	0	0
Dessau	0	0	0	0	0	0
Dessau/Verkehr	0	0	0	0	(0)	(0)
Dessau/Albrechtsplatz	_		0			(0)
Eisleben	0	0	0			
Genthin	0	0	0	0	0	
Greppin	(0)	0	0	0	0	0
Halberstadt	0	0	0	0	0	0
Halle/Nord	0	0	0	0	0	0
Halle/Ost	(0)	0	0	0	0	0
Halle/Südwest	0	0	0	0	0	0
Halle/Verkehr	0	8	0	0	0	0
Halle/Zentrum	0	0	0	0	0	
Harzgerode	0	0	0	0	0	0
Hettstedt	(0)	0	0	0	0	0
Köthen	0	0	0			
Leuna				(0)	0	0
Magdeburg/Reuter-Allee				(0)	(0)	
Magdeburg/Südost	0	(0)	0	0	0	0
Magdeburg/Verkehr	0	0	0	0	0	0
Magdeburg/West	0	0	0	0	0	0
Magdeburg/Zentrum-Ost	0	0	0	0	(0)	0
Magdeburg/Zentrum	0	0	0	0	0	
Merseburg	0	0	0	0	0	
Naumburg	0	0	0	0	0	0
Pouch	0	0	0	0	0	0
Quedlinburg	1	0	(0)			
Salzwedel	0	0	0	0	0	0
Sangerhausen	0	0	0	0	0	
Sangerhausen/Verkehr					0	(0)
Schkopau	0	0	0	0	0	0
Schönebeck	0	0	0	0	0	
Stendal	0	0	0	0	0	(0)
Weißenfels	0	(0)				
Weißenfels/Verkehr	5	(3)	(0)	0	(0)	0
Wernigerode	(0)	O O	0	0	(0)	0
Wittenberg	(0)	(0)	0	0	0	0
Wittenberg/Verkehr	` '	1	0	4	0	0
Wolfen	0	0	0	0	0	-
Zartau/Waldmessstation	_	_		0	0	(0)
Zeitz	0	0	0	0	0	0
Zerbst	0	0	0		†	† •
				J	I	<u> </u>

n - Anzahl der Überschreitungen pro Station und Jahr $(\dots)\dots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.11, Blatt 3: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Stickstoffdioxid

Komponente	Stickstoffdic	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/1 h	wg////				
Wert	140 µg/m³					
Wertigkeit		teilungsschw	Alla (ORS)			
Überschreitungen zulässig pro		tellurigaseriw	ciic (OBO)			
Station und Jahr	18					
Zeit	1996	1997	1998	1999	2000	2001
Messstelle/Anzahl	n	n	n	n	n 2000	n
Amsdorf	- 11	0	(1)	- 11	11	11
Aschersleben		U	(1)			0
Bad Dürrenberg	(0)	0	0	0	0	0
	(0) 15	0 11	0	0 1	0 2	0
Bernburg Bernburg/Verkehr	(11)	11	ı ı	ı		0
	. ,	0	0	-	0	(0)
Bitterfeld	1 (0)	0	0	0	0	(0)
Blankenburg	(0)	(0)				0
Brockenstation	(0)	(0)	0	0	0	0
Burg	0	0	0	0	0	0
Dessau	0	0	0	0	0	0
Dessau/Verkehr	14	1	0	1	(0)	(0)
Dessau/Albrechtsplatz						(0)
Eisleben	0	1	0			
Genthin	0	1	0	0	0	
Greppin	(0)	0	0	0	0	0
Halberstadt	1	8	0	0	0	0
Halle/Nord	5	0	0	0	0	0
Halle/Ost	(2)	0	0	0	0	0
Halle/Südwest	1	0	0	0	0	0
Halle/Verkehr	50	18	1	0	1	1
Halle/Zentrum	0	0	0	0	0	
Harzgerode	0	0	0	0	0	0
Hettstedt	(0)	0	0	0	0	0
Köthen	0	0	0			
Leuna				(0)	0	0
Magdeburg/Reuter-Allee				(4)	(0)	
Magdeburg/Südost	0	(0)	0	0	0	0
Magdeburg/Verkehr	11	8	6	4	0	0
Magdeburg/West	7	0	0	0	0	0
Magdeburg/Zentrum-Ost	0	0	0	0	(0)	0
Magdeburg/Zentrum	0	0	0	0	0	
Merseburg	0	1	0	0	0	
Naumburg	2	0	0	0	0	0
Pouch	0	0	0	0	0	0
Quedlinburg	2	0	(0)			
Salzwedel	0	0	0	0	0	0
Sangerhausen	0	0	0	0	0	
Sangerhausen/Mühlgasse					0	(0)
Schkopau	0	0	0	0	0	O O
Schönebeck	2	0	0	0	0	
Stendal	1	0	0	1	0	(0)
Weißenfels	0	(0)				` ′
Weißenfels/Verkehr	25	(25)	(1)	0	(0)	0
Wernigerode	(1)	0	O	0	(0)	0
Wittenberg	(0)	(0)	0	0	0	0
Wittenberg/Verkehr	\-/	53	13	189	2	0
Wolfen	0	0	0	0	0	
Zartau/Waldmessstation			0	0	0	(0)
Zeitz	0	1	0	0	0	0
Zerbst	0	2	0	-		
201031	U					

n - Anzahl der Überschreitungen pro Station und Jahr $(\dots)\dots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.11, Blatt 4: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Stickstoffdioxid

Komponente	Stickstoffdic	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/1 h	FJ				
Wert	100 μg/m³					
Wertigkeit		rteilungsschw	relle (LIRS)			
Überschreitungen zulässig pro		rtenarig 550riv	relie (ODO)			
Station und Jahr	18					
Zeit	1996	1997	1998	1999	2000	2001
Messstelle/Anzahl	n	n	n	n	2000 n	n
Amsdorf	- 11	2		11	11	- 11
Aschersleben			(1)			12
	(2)		1	2	0	12
Bad Dürrenberg	(3) 74	6 57	18	2 14	0 28	0
Bernburg	(44)	57	10	14	20	U
Bernburg/Verkehr		1	0	0	0	(0)
Bitterfeld	28	1	0	0	0	(0)
Blankenburg	(7)	(0)				
Brockenstation	(0)	(0)	0	0	0	0
Burg	4	5	0	2	0	0
Dessau	16	0	3	0	0	0
Dessau/Verkehr	131	52	17	26	(0)	(0)
Dessau/Albrechtsplatz						(2)
Eisleben	6	8	0			
Genthin	5	11	0	3	0	
Greppin	(7)	0	0	1	0	0
Halberstadt	14	34	0	0	0	0
Halle/Nord	58	13	6	16	7	0
Halle/Ost	(47)	1	0	1	0	0
Halle/Südwest	16	0	0	1	0	0
Halle/Verkehr	361	86	19	49	15	17
Halle/Zentrum	41	10	4	5	0	
Harzgerode	2	0	0	0	0	0
Hettstedt	(2)	2	1	1	0	0
Köthen	22	1	0	(0)		
Leuna				(0)	0	0
Magdeburg/Reuter-Allee				(94)	(39)	
Magdeburg/Südost	14	(4)	1	0	0	0
Magdeburg/Verkehr	115	204	83	50	18	16
Magdeburg/West	59	32	0	3	0	0
Magdeburg/Zentrum-Ost	18	16	0	4	(0)	0
Magdeburg/Zentrum	46	8	10	14	1	
Merseburg	20	11	2	1	0	
Naumburg	19	21	2	1	0	0
Pouch	0	1	0	0	0	0
Quedlinburg	17	11	(1)			
Salzwedel	0	0	0	0	0	0
Sangerhausen	9	5	0	0	0	(2)
Sangerhausen/Mühlgasse		_			10	(0)
Schkopau	17	7	1	1	0	0
Schönebeck	25	0	0	2	0	(2)
Stendal	16	3	1	5	0	(0)
Weißenfels	6	(0)				ļ
Weißenfels/Verkehr	398	(270)	(20)	35	(19)	0
Wernigerode	(8)	9	3	0	(0)	0
Wittenberg	(3)	(1)	2	3	0	0
Wittenberg/Verkehr		426	229	875	40	34
Wolfen	19	3	0	0	0	
Zartau/Waldmessstation			0	0	0	(0)
Zeitz	2	9	0	0		0
Zerbst	19	19	2			

n - Anzahl der Überschreitungen pro Station und Jahr $(\dots)\dots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.11, Blatt 5: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Stickstoffdioxid

Komponente	Stickstoffdioxid in µg/m³							
Schutzziel/Bezugszeit			einander folg	ende Stunde	n)			
Wert	400 μg/m ³	T II (di ci dai	ciriariaer reig	cride Otaride	11)			
Wertigkeit	Alarmwert (Δ\//)						
Überschreitungen zulässig pro	/ darmwert (/ (V)						
Station und Jahr								
Zeit	1996	1997	1998	1999	2000	2001		
Messstelle/Anzahl	n	n	n	n	n	n		
Amsdorf	- 11	0		- 11	11	11		
Aschersleben		U	(0)			0		
	(0)	0	0	0	0	U		
Bad Dürrenberg	(0)	0	0	0	0	0		
Bernburg		U	U	U	U	U		
Bernburg/Verkehr	(0)					(0)		
Bitterfeld	0	0	0	0	0	(0)		
Blankenburg	(0)	(2)						
Brockenstation	(0)	(0)	0	0	0	0		
Burg	0	0	0	0	0	0		
Dessau	0	0	0	0	0	0		
Dessau/Verkehr	0	0	0	0	(0)			
Dessau/Albrechtsplatz						(0)		
Eisleben	0	0	0					
Genthin	0	0	0	0	0			
Greppin	(0)	0	0	0	0	0		
Halberstadt	0	0	0	0	0	0		
Halle/Nord	0	0	0	0	0	0		
Halle/Ost	(0)	0	0	0	0	0		
Halle/Südwest	0	0	0	0	0	0		
Halle/Verkehr	0	0	0	0	0	0		
Halle/Zentrum	0	0	0	0	0			
Harzgerode	0	0	0	0	0	0		
Hettstedt	(0)	0	0	0	0	0		
Köthen	O O	0	0					
Leuna				(0)	0	0		
Magdeburg/Reuter-Allee				(0)	(0)			
Magdeburg/Südost	0	(0)	0	0	0	0		
Magdeburg/Verkehr	0	0	0	0	0	0		
Magdeburg/West	0	0	0	0	0	0		
Magdeburg/Zentrum-Ost	0	0	0	0	(0)	0		
Magdeburg/Zentrum	0	0	0	0	0			
Merseburg	0	0	0	0	0			
Naumburg	0	0	0	0	0	0		
Pouch	0	0	0	0	0	0		
Quedlinburg	0	0	(0)					
Salzwedel	0	0	0	0	0	0		
Sangerhausen	0	0	0	0	0	† •		
Sangerhausen/Mühlgasse	+ -	<u> </u>	<u> </u>	<u> </u>	0	(0)		
Schkopau	0	0	0	0	0	0		
Schönebeck	0	0	0	0	0			
Stendal	0	0	0	0	0	(0)		
Weißenfels	0	(0)			U	(0)		
Weißenfels/Verkehr	0	(0)	(0)	0	(0)	0		
			0	0		0		
Wernigerode	(0)	0			(0)			
Wittenberg	(0)	(0)	0	0	0	0		
Wittenberg/Verkehr	1 ^	0	0	0	0	0		
Wolfen	0	0	0	0	0	(0)		
Zartau/Waldmessstation	1 -	_	0	0	0	(0)		
Zeitz	0	0	0	0	0	0		
Zerbst	0	0	0					

n - Anzahl der Überschreitungen pro Station und Jahr $(\dots)\dots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.11, Blatt 6: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Stickstoffdioxid

Komponente	Stickstoffdic	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/Jah					
Wert	40 μg/m³	-		58 μg/m³		
Wertigkeit		gültig ab 01.0	1.2010		- Toleranzma	arge 2001
Zeit	1996	1997	1998	1999	2000	2001
Messstelle				1000		
Amsdorf		14	(12)			
Aschersleben			(12)			36
Bad Dürrenberg	(21)	20	17	17	15	00
Bernburg	29	33	28	29	32	22
Bernburg/Verkehr	(29)	33	20	23	32	22
Bitterfeld	23	19	21	17	17	(18)
Blankenburg	(17)	19	21	17	17	(10)
Brockenstation	(4,4)	(4,9)	6,3	6,2	4,9	4,7
	20	19	19	18	16	15
Burg Dessau	20	18	18	16	15	15
						15
Dessau/Verkehr	39	37	35	32	(23)	(20)
Dessau/Albrechtsplatz	- 00	40	47			(29)
Eisleben	20	19	17	40		
Genthin	17	16	16	13	40	47
Greppin	(18)	16	15	16	16	17
Halberstadt	22	20	14	12	14	16
Halle/Nord	26	24	22	22	19	19
Halle/Ost	(25)	20	18	21	18	18
Halle/Südwest	21	20	17	17	14	15
Halle/Verkehr	52	41	33	39	35	34
Halle/Zentrum	30	25	22	23	21	
Harzgerode	12	10	5,6	5,3	5,8	6,3
Hettstedt	(19)	19	18	18	15	16
Köthen	21	20	17			
Leuna				(15)	15	16
Magdeburg/Reuter-Allee					(44)	
Magdeburg/Südost	23	(24)	19	20	(19)	18
Magdeburg/Verkehr	43	48	46	43	34	41
Magdeburg/West	29	29	24	22	21	21
Magdeburg/Zentr.Ost	25	28	17	21	(19)	21
Magdeburg/Zentrum	29	28	26	27	22	
Merseburg	24	23	20	19		
Naumburg	23	23	19	19	18	17
Pouch	19	17	13	14	14	16
Quedlinburg	20	18	(14)			
Salzwedel	15	15	16	14	12	13
Sangerhausen	20	19	16	16		
Sangerhausen/Mühlgasse					37	(32)
Schkopau	24	24	20	21	18	19
Schönebeck	22	21	19	19	17	
Stendal	24	23	21	21	18	(20)
Weißenfels	21	(20)				\
Weißenfels/Verkehr	54	(47)	(34)	33	(34)	30
Wernigerode	(23)	22	20	16	(16)	16
Wittenberg	(20)	(20)	18	17	16	15
Wittenberg/Verkehr	(-3)	43	38	49	32	33
Wolfen	22	19	15	15		1
Zartau/Waldmessstation			10	9,0	7,1	(6,3)
Zeitz	22	20	19	16	15	15
Zerbst	21	21	19	10		

 $^{(\}ldots)\ldots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.12: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Stickstoffoxide

Komponente	Stickstoffox	Stickstoffoxide (NO _x) in µg/m³							
Schutzziel/Bezugszeit	Vegetation/	Vegetation/Jahr							
Wert	30 μg/m ³	30 μg/m³							
Wertigkeit	Grenzwert o	Grenzwert gültig ab 19.07.2001							
Zeit	1996	1997	1998	1999	2000	2001			
Messstelle									
Brockenstation	(5,3)	6,4	9,5	8,4	5,7	8,4			
Harzgerode	14	12	6,4	6,0	6,4	7,1			
Salzwedel	21	20	22	19	17	16			
Pouch	27	25	19	18	18	20			
Zartau/Waldmessstation			12	10	9,0	(7,5)			

^{(...) ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Jahreskenngrößen Schwebstaub TSP 2000 und 2001 in μg/m³ Tabelle 2.13, Blatt 1:

Messstation				ittelwerte 1)	98-Perzentile (I2)	
	2000	2001	2000	2001	2000	2001
Salzwedel	FH62IN	FH62IN	28	28	60	63
Harzgerode	FH62IN	FH62IN	16	16	40	39
Pouch	FH62IN	FH62IN (bis 31.07.01)	(28)	(26)	(68)	(59)
Burg	FH62IN		28		60	76
Magdeburg/West	FH62IN	FH62IN	32	29	75	67
Magdeburg/ZentrOst	Grav.(Nur arbeitstäglich)		40		107	
Halberstadt	FH62IN	FH62IN	32	28	72	71
Dessau	FH62IN	FH62IN	32	30	67	71
Wittenberg	FH62IN		28		68	75
Greppin	FH62IN	FH62IN (bis 03.09.01)	33	(32)	72	(70)
Hettstedt	FH62IN	FH62IN	38 ¹⁾	34 ²⁾	89 ¹⁾	77 ²⁾
Halle/Nord	FH62IN	FH62IN	30	29	66	66
Halle/Südwest	FH62IN	FH62IN	27	26	63	64
Schkopau	FH62IN	FH62IN (bis 01.08.01)	34	(31)	70	(63)
Leuna	FH62IN	FH62IN	(35)	32	(80)	74
Naumburg	FH62IN (bis 9.10.00)		(31)		(76)	
Zeitz	FH62IN	FH62IN	28	27	64	66

Tabelle 2.13, Blatt 2: Jahreskenngrößen Partikel PM10 2000 und 2001 in μg/m³

	Gerät/	Gerät/	Jahresm	ittelwerte	98-Per	zentile
Messstation	Methode	Methode	2000	2001	2000	2001
	2000	2001				
Zartau	FH62IN ¹⁾	FH62IN ¹⁾	18 ³⁾	17 ⁶⁾	37 ³⁾	48 ⁶⁾
	(mit Heizung)	(mit Heizung)				
Bernburg	FH62IN ¹⁾	FH62IN ¹⁾	39 ³⁾	31 ⁶⁾	66 ³⁾	62 ⁶⁾
Otensial	(mit Heizung)	(mit Heizung)	31 ⁴⁾	007)	0.44)	007)
Stendal	FH62IN ¹⁾	FH62IN ¹⁾	31 7	287)	64 ⁴⁾	63 ⁷⁾
Burg		FH62IN ¹⁾ mit Heizung		(24)		(50)
11 /7 / 0 /		(seit 12.06.01)		00		
Magdeburg/ZentrOst		Gravimetrie		26		56
Wittenberg		(seit 03.02.01) FH62IN ¹⁾ mit Heizung		(24)		(60)
Wittenberg		(seit 13.06.01)		(24)		(00)
Naumburg		FH62IN ¹⁾		25		60
. Taamaa g						
Wernigerode	FH62IN ¹⁾ (12.01.00)	(mit Heizung) FH62IN ¹⁾	32 ⁵⁾	28 ⁷⁾	65 ⁵⁾	59 ⁷⁾
	(Heizung seit 11.10.)	(mit Heizung)				
Halle/Verkehr	TEOM ²⁾	TEOM ²⁾	36	34	68	74
Weißenfels/Verkehr	TEOM ²⁾	TEOM ²⁾	(27)	27	(65)	62
Bitterfeld	TEOM ²⁾ (12.01.00)	TEOM ²⁾	(15)	23	(32)	49
Halle/Ost	TEOM ²⁾ (12.01.00)	TEOM ²⁾	27	25	57	55
Magdeburg/Südost	TEOM ²⁾ (07.01.00)	TEOM ²⁾	25	27	53	59
Dessau/Verkehr		Gravimetrie		27		57
Magdeburg/Verkehr	Gravimetrie	Gravimetrie	31	31	66	68
Aschersleben		Gravimetrie		46		102
Wittenberg/Verkehr	Gravimetrie	Gravimetrie	34	34	62	75

^{(...) ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

1) ... Korrekturfaktor zur Anpassung an das Referenzverfahren 1,2

2) ... Korrekturfaktor zur Anpassung an das Referenzverfahren 1,25

^{(...) ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

1) ... Umstellung der Volumenbestimmung von Betriebsvolumen auf Normvolumen 20 °C am 07.02.00

2) ... Umstellung der Volumenbestimmung von Normvolumen auf Betriebsvolumen 20 °C am 05.03.01

^{3) ...} Umstellung der Volumenbestimmung von Betriebsvolumen auf Normvolumen 20 °C am 08.02.00

^{4) ...} Umstellung der Volumenbestimmung von Betriebsvolumen auf Normvolumen 20 °C am 04.02.00 5) ... Umstellung der Volumenbestimmung von Betriebsvolumen auf Normvolumen 20 °C am 10.02.00

^{6) ...} Umstellung der Volumenbestimmung von Normvolumen auf Betriebsvolumen 20 °C am 05.03.01

^{7) ...} Umstellung der Volumenbestimmung von Normvolumen auf Betriebsvolumen 20 °C am 07.03.01

Tabelle 2.13, Blatt 3: Jahreskenngrößen Partikel PM2,5 2000 und 2001 in $\mu g/m^3$

	Gerät/	Gerät/	Jahresm	ittelwerte	98-Per	zentile
Messstation	Methode	Methode	2000	2001	2000	2001
	1999	2000				
Halle/Ost	TEOM	TEOM	17	(15)	39	(38)

^{(...) ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.14, Blatt 1: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Partikel PM10

Komponente	Partikel PM	10 in ua/m³					
Schutzziel/Bezugszeit	Mensch/24 h						
Wert	70 μg/m³						
Wertigkeit		+ Toleranzma	arge (GW+TM	1) 2001			
Überschreitungen zulässig pro		roioranzini	21g0 (011 111	., 2001			
Station und Jahr	35						
Zeit	1996	1997	1998	1999	2000	2001	
Messstelle/Anzahl	n	n	n	n	n	n	
Amsdorf		31	(11)				
Aschersleben						38	
Bad Dürrenberg	68	26	10	8	1		
Bernburg	158	87	37	53	17	5	
Bitterfeld	41					1	
Blankenburg	(46)						
Burg	32	16	5	5	0	1	
Dessau	41	19	10	4	0	4	
Dessau/Verkehr	138	96	29	8			
Dessau/Albrechtsplatz	.55	55	† <u>-</u> ~		1	1	
Eisleben	59	27	12		1		
Genthin	19	6	6	3			
Greppin	51	23	14	10	0	0	
Halberstadt	66	37	11	13	2	0	
Halle/Nord	76	35	9	8	0	2	
Halle/Ost	(51)	23	14	10	1	2	
Halle/Südwest	53	27	16	11	0	1	
Halle/Verkehr	113	57	30	33	5	11	
						11	
Halle/Zentrum	57	18	8	12	1		
Harzgerode	19	4	1	0	0	0	
Hettstedt	38	15	11	6	9	1	
Köthen	55	15	11	_	(5)		
Leuna			4.4	5	(5)	2	
Magdeburg/Südost	72	24	14	17	1	2	
Magdeburg/Verkehr	133	83	31	8	5	5	
Magdeburg/West	77	52	54	24	2	2	
Magdeburg/Zentrum	56	36	7	17	0		
Merseburg	82	34	12	8		_	
Naumburg	101	55	25	14	(4)	5	
Pouch	26	7	5	3	(0)	3	
Quedlinburg	58	24	(10)				
Salzwedel	18	3	6	5	1	4	
Sangerhausen	46	19	17	10			
Schkopau	74	41	12	9	1	4	
Schönebeck	60	33	15	18	3		
Stendal	69	43	26	30	4	4	
Weißenfels	84	(28)					
Weißenfels/Verkehr	116	55	15	14	(1)	3	
Wernigerode	(49)	19	8	6	5	3	
Wittenberg	35	(35)	26	6	0	3	
Wittenberg/Verkehr		33	10	5	3	10	
Wolfen	37	9	6	(0)			
Zartau/Waldmessstation			5	1	1	3	
Zeitz	50	19	7	2	0	3	
Zerbst	28	21	(4)				

n - Anzahl der Überschreitungen pro Station und Jahr (...) ... Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.14, Blatt 2: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Partikel PM10

Komponente	Partikel PM	10 in µg/m³					
Schutzziel/Bezugszeit	Mensch/24 h						
Wert	50 μg/m³						
Wertigkeit		(GW) gültig a	b dem 1.1.20	05			
Überschreitungen zulässig pro Station und Jahr	35 (2005)	, 0 0					
Zeit	1996	1997	1998	1999	2000	2001	
Messstelle/Anzahl	n	n	n	n	n	n 2001	
Amsdorf	- 11	108	(42)	11	- 11	11	
		106	(42)			114	
Aschersleben	400	00	24	42	20	114	
Bad Dürrenberg	132	80 205	34 120		20	20	
Bernburg	250	205	120	129	76	30	
Bitterfeld	57					5	
Blankenburg	(81)		05	0.5	_	7	
Burg	90	55	25	25	5	7	
Dessau	111	74	41	35	21	12	
Dessau/Verkehr	233	187	78	33			
Dessau/Albrechtsplatz				1		11	
Eisleben	133	104	41				
Genthin	74	34	15	18			
Greppin	128	95	39	27	24	13	
Halberstadt	124	94	40	43	22	10	
Halle/Nord	143	99	27	27	13	17	
Halle/Ost	(67)	35	21	16	14	13	
Halle/Südwest	115	90	38	45	11	9	
Halle/Verkehr	202	154	94	99	65	52	
Halle/Zentrum	113	87	45	44	23		
Harzgerode	45	22	7	7	0	0	
Hettstedt	95	80	53	38	44	25	
Köthen	111	60	31				
Leuna				32	(32)	26	
Magdeburg/Südost	149	92	56	66	11	16	
Magdeburg/Verkehr	245	203	74	46	30	29	
Magdeburg/West	147	120	116	64	25	12	
Magdeburg/Zentrum	128	101	50	50	22		
Magdeburg/Zentrum-Ost						15	
Merseburg	159	105	35	31			
Naumburg	174	125	65	51	(18)	17	
Pouch	43	13	12	5	(9)	16	
Quedlinburg	114	72	(32)				
Salzwedel	66	28	19	26	8	8	
Sangerhausen	101	85	50	50			
Schkopau	158	121	42	39	21	16	
Schönebeck	132	90	63	57	43		
Stendal	156	130	72	72	33	24	
Weißenfels	167	(93)					
Weißenfels/Verkehr	210	141	63	59	(19)	26	
Wernigerode	(129)	73	33	33	32	17	
Wittenberg	92	(104)	59	35	16	14	
Wittenberg/Verkehr		91	33	24	43	47	
Wolfen	50	22	13	(3)	1.5	-	
Zartau/Waldmessstation	+		17	6	6	7	
Zeitz	105	67	24	22	14	9	
Zerbst	83	79	(25)				
LUIDSI	UU	19	(20)			<u> </u>	

n - Anzahl der Überschreitungen pro Station und Jahr $(\dots)\dots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.14, Blatt 3: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Partikel PM10

Komponente	Partikel PM	l10 in μg/m³				
Schutzziel/Bezugszeit	Mensch/24					
Wert	30 μg/m³					
Wertigkeit		rteilungsschv	velle (OBS)			
Überschreitungen zulässig pro	7					
Station und Jahr	/					
Zeit	1996	1997	1998	1999	2000	2001
Messstelle/Anzahl	n	n	n	n	n	n
Amsdorf		211	(126)			
Aschersleben						228
Bad Dürrenberg	230	201	105	108	72	
Bernburg	332	306	266	299	231	156
Bitterfeld	147					68
Blankenburg	(149)					
Burg	208	171	107	93	74	93
Dessau	236	201	157	121	107	87
Dessau/Verkehr	324	307	212	123		
Dessau/Albrechtsplatz						100
Eisleben	252	222	152			
Genthin	157	116	78	61		
Greppin	244	203	128	135	118	90
Halberstadt	230	202	138	128	109	74
Halle/Nord	254	200	115	127	93	84
Halle/Ost	(148)	143	78	77	114	87
Halle/Südwest	234	201	109	117	76	67
Halle/Verkehr	300	290	259	245	209	193
Halle/Zentrum	249	211	155	176	129	
Harzgerode	121	78	42	37	12	11
Hettstedt	195	200	170	152	158	119
Köthen	225	182	113		100	
Leuna				107	(128)	120
Magdeburg/Südost	269	210	174	162	87	121
Magdeburg/Verkehr	339	314	208	155	152	156
Magdeburg/West	276	249	219	159	101	76
Magdeburg/Zentrum	265	245	141	161	127	
Magdeburg/Zentrum-Ost			1		1	98
Merseburg	275	205	127	98		
Naumburg	266	234	167	128	(78)	93
Pouch	117	83	57	36	(65)	72
Quedlinburg	189	172	(131)		(50)	
Salzwedel	191	128	103	82	67	62
Sangerhausen	209	193	138	137	1	<u> </u>
Schkopau	272	236	148	140	131	92
Schönebeck	271	221	190	185	156	
Stendal	280	280	193	209	141	111
Weißenfels	268	(207)	.00			
Weißenfels/Verkehr	305	265	196	186	(85)	118
Wernigerode	(232)	214	134	170	162	123
Wittenberg	177	(220)	150	102	79	93
Wittenberg/Verkehr	1,,,	222	190	149	200	173
Wolfen	133	96	55	(40)	200	.,,
Zartau/Waldmessstation	100	- 55	59	44	36	33
Zeitz	220	193	119	94	77	73
Zerbst	179	209	(115)	3-4	,,,	, ,
201031	118	203	(113)	i	l	

n - Anzahl der Überschreitungen pro Station und Jahr (...) ... Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.14, Blatt 4: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Partikel PM10

Komponente	Partikel PM	10 in µg/m³				
Schutzziel/Bezugszeit	Mensch/24					
Wert	20 μg/m³					
Wertigkeit		rteilungssch	welle (UBS)			
Überschreitungen zulässig pro	7					
Station und Jahr	'					
Zeit	1996	1997	1998	1999	2000	2001
Messstelle/Anzahl	n	n	n	n	n	N
Amsdorf		291	(209)			
Aschersleben						281
Bad Dürrenberg	289	273	194	195	169	
Bernburg	356	342	330	354	342	279
Bitterfeld	246					169
Blankenburg	(199)					
Burg	294	274	237	204	202	215
Dessau	327	281	271	245	231	184
Dessau/Verkehr	350	346	294	235		-
Dessau/Albrechtsplatz			1		1	207
Eisleben	322	299	255	İ	İ	1
Genthin	253	208	162	153		
Greppin	317	285	234	254	239	197
Halberstadt	305	287	248	228	218	165
Halle/Nord	323	289	214	231	210	172
Halle/Ost	(217)	233	188	174	223	201
Halle/Südwest	304	287	197	209	166	143
Halle/Verkehr	345	339	324	325	303	292
Halle/Zentrum	312	292	263	293	254	202
Harzgerode	203	157	92	96	56	39
Hettstedt	280	285	276	260	271	225
Köthen	303	280	225	200		
Leuna	- 555	200		193	(225)	239
Magdeburg/Südost	325	300	268	254	194	211
Magdeburg/Verkehr	363	349	308	303	289	280
Magdeburg/West	345	322	302	277	232	164
Magdeburg/Zentrum	341	323	246	288	275	101
Magdeburg/Zentrum-Ost	0.1	020	2.0	200	2.5	178
Merseburg	340	285	219	194	1	.,,
Naumburg	327	299	259	227	(161)	190
Pouch	204	173	128	98	(143)	160
Quedlinburg	273	271	(238)		()	
Salzwedel	293	262	224	202	191	171
Sangerhausen	298	286	232	250	1	1 ., .
Schkopau	334	322	269	264	256	215
Schönebeck	348	302	300	297	289	2.0
Stendal	347	338	311	313	282	240
Weißenfels	333	(276)	011	0.10	202	240
Weißenfels/Verkehr	340	324	284	296	(156)	218
Wernigerode	(308)	293	261	288	304	265
Wittenberg	244	(296)	268	204	183	178
Wittenberg/Verkehr	<u> </u>	310	299	285	307	289
Wolfen	217	196	146	(103)	307	209
Zartau/Waldmessstation	211	190	131	104	98	81
Zeitz	314	280	214	204		
Zerbst				204	180	157
Zerust	268	305	(245)			

n - Anzahl der Überschreitungen pro Station und Jahr (...) ... Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.14, Blatt 5: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Partikel PM10

Wert	Mensch/Jah 40 µg/m³ Grenzwert g 1996 49 73 32 (49) 40	gültig ab 01.0 1997 40 37 57	1.2005 1998 (32) 26 45	46,4 µg/m³ Grenzwert + 1999	Toleranzma 2000	2001
Wertigkeit Zeit Messstelle Amsdorf Aschersleben Bad Dürrenberg Bernburg Bitterfeld Blankenburg	49 73 32 (49)	1997 40 37	(32)	Grenzwert + 1999		2001
Wertigkeit Zeit Messstelle Amsdorf Aschersleben Bad Dürrenberg Bernburg Bitterfeld Blankenburg	49 73 32 (49)	1997 40 37	(32)	1999		2001
Messstelle Amsdorf Aschersleben Bad Dürrenberg Bernburg Bitterfeld Blankenburg	49 73 32 (49)	40	(32)	1999		2001
Amsdorf Aschersleben Bad Dürrenberg Bernburg Bitterfeld Blankenburg	73 32 (49)	37	26	27		40
Aschersleben Bad Dürrenberg Bernburg Bitterfeld Blankenburg	73 32 (49)	37	26	27		40
Bad Dürrenberg Bernburg Bitterfeld Blankenburg	73 32 (49)		26	27		40
Bernburg Bitterfeld Blankenburg	73 32 (49)			27		46
Bernburg Bitterfeld Blankenburg	32 (49)	57	45		23	
Bitterfeld Blankenburg	(49)			48	39	31
						23
Duig		34	27	26	24	(24)
Dessau	44	37	31	29	27	24
Dessau/Verkehr	68	56	41	29		
Dessau/Albrechtsplatz						27
Eisleben	48	41	31			
Genthin	34	27	23	22		
Greppin	46	39	29	30	28	(25)
Halberstadt	47	40	30	29	27	23
Halle/Nord	50	40	27	28	25	23
Halle/Ost	(37)	29	24	23	27	25
Halle/Südwest	45	38	27	28	23	21
Halle/Verkehr	64	50	41	41	36	34
Halle/Zentrum	46	39	31	33	29	
Harzgerode	29	22	17	17	14	13
Hettstedt	39	37	33	31	32	27
Leuna				26	(29)	25
Köthen	44	35	28		\ -/	
Magdeburg/Reuter-Allee						
Magdeburg/Südost	53	39	33	33	25	27
Magdeburg/Verkehr	67	58	39	32	31	31
Magdeburg/West	54	48	44	35	27	23
Magdeburg/Zentrum	48	41	31	34	29	
Magdeburg/Zentrum-Ost	63	60	48	45		26
Merseburg	54	43	28	26		
Naumburg	58	46	34	30	(26)	25
Pouch	28	23	19	17	(24)	(20)
Quedlinburg	42	36	(30)			\
Salzwedel	36	29	27	26	23	22
Sangerhausen	42	37	31	31		
Schkopau	53	44	31	31	28	(25)
Schönebeck	50	41	35	35	32	(==)
Stendal	52	47	38	39	31	28
Weißenfels	56	(42)		1	27	
Weißenfels/Verkehr	66	48	36	35	·	27
Wernigerode	(47)	38	29	32	32	28
Wittenberg	37	(43)	34	27	24	(24)
Wittenberg/Verkehr	Ψ.	46	33	31	34	34
Wolfen	30	24	21	(18)	<u> </u>	<u> </u>
Zartau/Waldmessstation			20	18	18	17
Zeitz	43	35	26	26	23	22
Zerbst	37	38	(29)		20	
20.000	01	- 50	(20)			

 $^{(\}dots)$ \dots Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Jahreskenngrößen Schwefeldioxid 2000 und 2001 in $\mu g/m^3$ Tabelle 2.15:

	Jahresm	ittelwerte	98-Per	zentile
Messstation	2000	2001	2000	2001
Salzwedel	2,11)	2,1 ¹⁾	13	9
Zartau	2,1 ¹⁾	2,1 ¹⁾	12	11
Brockenstation	2,11)	2,1 ¹⁾	12	10
Harzgerode	2,1 ¹⁾	2,1 ¹⁾	12	12
Pouch	7,3	5,8	20	20
Stendal	5,1	5,1	15	14
Burg	2,1 ¹⁾	2,1 ¹⁾	13	12
Magdeburg/Südost	5,0	2,11)	14	12
Magdeburg/West	2,1 ¹⁾	4,2	13	13
Magdeburg/Zentrum-Ost	(3,3)	2,1 ¹⁾	(12)	11
Halberstadt	2,11)	2,1 ¹⁾	12	11
Wernigerode	4,8	5,4	23	25
Bernburg	4,8	2,1 ¹⁾	14	13
Dessau	2,1 ¹⁾	2,11)	16	15
Wittenberg	4,2	2,11)	15	16
Greppin	5,7	6,2	17	21
Bitterfeld	5,2	(4,7)	17	(16)
Hettstedt	2,1 ¹⁾	2,1 ¹⁾	14	17
Halle/Nord	7,7	2,1 ¹⁾	24	22
Halle/Ost	2,1 ¹⁾	2,1 ¹⁾	14	16
Halle/Südwest	8,2	2,1 ¹⁾	20	19
Schkopau	9,4	6,8	23	25
Leuna	9,0	5,4	40	33
Naumburg	10	7,0	24	25
Zeitz	9,0	2,1 ¹⁾	26	17
Halle/Verkehr	6,1	2,11)	18	16
Weißenfels/Verkehr	(7,8)	5,7	(24)	21

^{(...) ...} Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

1) ... Kenngröße kleiner als die Nachweisgrenze des Gerätes, deshalb lt. Definition gleich der halben Nachweisgrenze gesetzt.

Tabelle 2.16, Blatt 1: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Schwefeldioxid

Komponente		Schwefeldioxid in µg/m³						
Schutzziel/Bezugszeit	Mensch/1 h							
Wert	350 μg/m³							
Wertigkeit	Grenzwert (GW) gültig a	b 01.01.2005					
Überschreitungen zulässig pro Station und Jahr	24							
Zeit	1996	1997	1998	1999	2000	2001		
Messstelle/Anzahl	n	n	n	n	n	n		
Amsdorf		1	(0)					
Bad Dürrenberg	5	4	0	1	0			
Bernburg	0	0	0	0	0	0		
Bitterfeld	4	0	0	0	0	(0)		
Blankenburg	(0)							
Brockenstation	0	(0)	0	2	0	0		
Burg	0	0	(0)	0	0	0		
Burg/Einzelmessstelle	0	0	0	0				
Dessau	0	0	0	0	0	0		
Eisleben	(2)	4	0					
Genthin	(0)	0	0	0				
Greppin	27	10	3	6	0	0		
Halberstadt	0	1	0	0	0	0		
Halle/Nord	4	4	1	0	0	0		
Halle/Ost	0	6	2	0	0	0		
Halle/Südwest	8	4	1	0	0	0		
Halle/Verkehr	0	2	2	0	0	0		
Halle/West	0	7	2	0				
Halle/Zentrum-Nord	0	7	0	0				
Halle/Zentrum	(3)	5	3	0	0			
Harzgerode	0	0	0	0	0	0		
Hettstedt	3	4	0	0	0	0		
Leuna				(0)	0	0		
Köthen	0	0	2					
Magdeburg/Südost	0	0	0	0	0	0		
Magdeburg/West	0	0	0	0	0	0		
Magdeburg/Zentrum-Ost	0	0	0	0	(0)	0		
Magdeburg/Zentrum	0	0	0	0	0			
Merseburg	8	10	0	0				
Naumburg	9	2	0	0	0	0		
Pouch	1	1	0	0	0	0		
Quedlinburg	1	0	(0)					
Salzwedel	0	0	0	0	0	0		
Sangerhausen	0	0	0	0				
Schkopau	(12)	5	0	0	0	0		
Schönebeck	0	0	0	0	0			
Stendal	0	0	0	0	0	0		
Weißenfels	2	(0)						
Weißenfels/Verkehr	1	(0)	(0)	0	(0)	0		
Wernigerode	(0)	0	(0)	0	0	0		
Wittenberg	0	(0)	0	0	0	0		
Wolfen	0	0	0	0				
Zartau/Waldmessstation			(0)	0	0	0		
Zeitz	13	1	Ô	0	0	0		
Zerbst	0	0	(0)					

n - Anzahl der Überschreitungen pro Station und Jahr $(\dots)\dots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.16, Blatt 2: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Schwefeldioxid

Komponente	Schwefeldio	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/1 h					
Wert	470 μg/m³					
Wertigkeit		- Toleranzma	arge (GW+TN	<i>I</i>) 2001		
Überschreitungen zulässig pro			go (.,		
Station und Jahr	24					
Zeit	1996	1997	1998	1999	2000	2001
Messstelle/Anzahl	n	n	n	n	n	n
Amsdorf		0	(0)			
Bad Dürrenberg	1	0	0	1	0	
Bernburg	0	0	0	0	0	0
Bitterfeld	0	0	0	0	0	(0)
Blankenburg	(0)					
Brockenstation	Ó	(0)	0	0	0	0
Burg	0	Ó	(0)	0	0	0
Burg/Einzelmessstelle	0	0	0	0	-	-
Dessau	0	0	0	0	0	0
Eisleben	(0)	0	0	1		
Genthin	(0)	0	0	0		
Greppin	7	4	0	0	0	0
Halberstadt	0	0	0	0	0	0
Halle/Nord	1	2	1	0	0	0
Halle/Ost	0	2	0	0	0	0
Halle/Südwest	3	2	0	0	0	0
Halle/Verkehr	0	1	1	0	0	0
Halle/West	0	2	0	0	0	U
Halle/Vest Halle/Zentrum-Nord	0	3	0	0		
Halle/Zentrum	(2)	2	1	0	0	
	0	0	0	0	0	0
Harzgerode Hettstedt	0	1	0	0	0	
	U	I	U		0	0
Leuna			4	(0)	U	U
Köthen	0	0	1	0	0	0
Magdeburg/Südost	0	0	0	0	0	0
Magdeburg/West	0	0	0	0	0	0
Magdeburg/Zentrum-Ost	0	0	0	0	(0)	0
Magdeburg/Zentrum	0	0	0	0	0	
Merseburg	2	5	0	0		_
Naumburg	5	0	0	0	0	0
Pouch	0	0	0	0	0	0
Quedlinburg	0	0	(0)		_	
Salzwedel	0	0	0	0	0	0
Sangerhausen	0	0	0	0	_	
Schkopau	(6)	2	0	0	0	0
Schönebeck	0	0	0	0	0	
Stendal	0	0	0	0	0	0
Weißenfels	1	(0)				
Weißenfels/Verkehr	0	(0)	(0)	0	(0)	0
Wernigerode	(0)	0	(0)	0	0	0
Wittenberg	0	(0)	0	0	0	0
Wolfen	0	0	0	0		
Zartau/Waldmessstation			(0)	0	0	0
Zeitz	9	0	0	0	0	0
Zerbst	0	0	(0)			

n - Anzahl der Überschreitungen pro Station und Jahr $(\dots) \dots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.16, Blatt 3: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Schwefeldioxid

Komponente	Schwefeldic	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/1 h					
Wert	500 μg/m ³					
Wertigkeit	Alarmwert	(3 x 1h)				
Überschreitungen zulässig pro						
Station und Jahr	1000	400-	4000	4000	0000	0004
Zeit Messstelle/Anzahl	1996	1997	1998	1999	2000	2001
Amsdorf	n	n 0	(O)	n	n	n
	0	0	(0)	0	0	
Bad Dürrenberg	-				0	0
Bernburg	0	0	0	0	0	0
Bitterfeld	-	0	0	U	0	(0)
Blankenburg	(0)	(0)	0	0	0	0
Brockenstation	0	(0)	0	0	0	0
Burg	0	0	(0)	0	0	0
Burg/Einzelmessstelle	0	0	0	0		
Dessau	0	0	0	0	0	0
Eisleben	(0)	0	0	_		
Genthin	(0)	0	0	0	_	_
Greppin	0	0	0	0	0	0
Halberstadt	0	0	0	0	0	0
Halle/Nord	0	0	0	0	0	0
Halle/Ost	0	0	0	0	0	0
Halle/Südwest	1	0	0	0	0	0
Halle/Verkehr	0	0	0	0	0	0
Halle/West	0	0	0	0		
Halle/Zentrum-Nord	0	0	0	0		
Halle/Zentrum	(0)	0	0	0	0	
Harzgerode	0	0	0	0	0	0
Hettstedt	0	0	0	0	0	0
Leuna				(0)	0	0
Köthen	0	0	0			
Magdeburg/Südost	0	0	0	0	0	0
Magdeburg/West	0	0	0	0	0	0
Magdeburg/Zentrum-Ost	0	0	0	0	(0)	0
Magdeburg/Zentrum	0	0	0	0	0	
Merseburg	0	1	0	0		
Naumburg	0	0	0	0	0	0
Pouch	0	0	0	0	0	0
Quedlinburg	0	0	(0)			
Salzwedel	0	0	0	0	0	0
Sangerhausen	0	0	0	0		
Schkopau	(0)	0	0	0	0	0
Schönebeck	0	0	0	0	0	
Stendal	0	0	0	0	0	0
Weißenfels	0	(0)				
Weißenfels/Verkehr	0	(0)	(0)	0	(0)	0
Wernigerode	(0)	0	(0)	0	0	0
Wittenberg	0	(0)	0	0	0	0
Wolfen	0	0	0	0		
Zartau/Waldmessstation			(0)	0	0	0
Zeitz	2	0	0	0	0	0
Zerbst	0	0	(0)			

n - Anzahl der Überschreitungen an drei aufeinander folgenden Stunden pro Station und Jahr (\dots) \dots Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.16, Blatt 4: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Schwefeldioxid

Komponente	Schwefeldioxid in µg/m³							
Schutzziel/Bezugszeit	Mensch/24							
Wert	125 μg/m³							
Wertigkeit	Grenzwert (GW) gültig a	b 01.01.2005					
Überschreitungen zulässig pro Station und Jahr	3							
Zeit	1996	1997	1998	1999	2000	2001		
Messstelle/Anzahl	n	n	n	n	n	n		
Amsdorf		1	(0)					
Bad Dürrenberg	4	2	Ó	0	0			
Bernburg	0	1	0	0	0	0		
Bitterfeld	2	0	0	0	0	(0)		
Blankenburg	(2)					. ,		
Brockenstation	Ó	(0)	0	0	0	0		
Burg	0	Ô	(0)	0	0	0		
Burg/Einzelmessstelle	0	0	Ó	0				
Dessau	0	0	0	0	0	0		
Eisleben	(3)	2	0					
Genthin	(0)	0	0	0				
Greppin	4	0	0	0	0	0		
Halberstadt	1	1	0	0	0	0		
Halle/Nord	2	1	1	0	0	0		
Halle/Ost	7	1	0	0	0	0		
Halle/Südwest	2	1	0	0	0	0		
Halle/Verkehr	0	1	0	0	0	0		
Halle/West	1	1	0	0				
Halle/Zentrum-Nord	1	1	0	0				
Halle/Zentrum	(3)	1	1	0	0			
Harzgerode	2	1	0	0	0	0		
Hettstedt	4	1	0	0	0	0		
Leuna				(0)	0	0		
Köthen	0	0	0					
Magdeburg/Südost	0	0	0	0	0	0		
Magdeburg/West	1	0	0	0	0	0		
Magdeburg/Zentrum-Ost	0	0	0	0	(0)	0		
Magdeburg/Zentrum	0	0	0	0	0			
Merseburg	7	3	0	0				
Naumburg	9	3	0	0	0	0		
Pouch	1	0	0	0	0	0		
Quedlinburg	2	0	(0)					
Salzwedel	0	0	0	0	0	0		
Sangerhausen	4	1	0	0				
Schkopau	(7)	2	0	0	0	0		
Schönebeck	0	0	0	0	0			
Stendal	0	0	0	0	0	0		
Weißenfels	4	(2)						
Weißenfels/Verkehr	0	(2)	(0)	0	(0)	0		
Wernigerode	(1)	0	(0)	0	0	0		
Wittenberg	0	(0)	0	0	0	0		
Wolfen	0	0	0	0				
Zartau/Waldmessstation			(0)	0	0	0		
Zeitz	2	3	0	0	0	0		
Zerbst	0	0	(0)					

n - Anzahl der Überschreitungen pro Station und Jahr (...) ... Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.16, Blatt 5: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Schwefeldioxid

Komponente	Schwefeldic	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/24					
Wert	75 μg/m³					
Wertigkeit	Obere Beur	teilungsschw	elle (OBS)			
Überschreitungen zulässig pro	3					
Station und Jahr Zeit		4007	4000	4000	2000	2004
Messstelle/Anzahl	1996 n	1997 n	1998 n	1999 n	2000 n	2001 n
Amsdorf		3	(0)	- 11	11	11
Bad Dürrenberg	25	5	0	0	0	
	11	1	0	0	0	0
Bernburg Bitterfeld	17	2	0			
		2	0	0	0	(0)
Blankenburg	(7)	(0)			0	0
Brockenstation	1	(0)	0	0	0	0
Burg	3	0	(0)	0	0	0
Burg/Einzelmessstelle	4	0	0	0		
Dessau	13	0	0	0	0	0
Eisleben	(19)	2	0			
Genthin	(2)	0	0	0		
Greppin	24	5	0	2	0	0
Halberstadt	10	2	0	0	0	0
Halle/Nord	37	6	1	0	0	0
Halle/Ost	23	3	1	0	0	0
Halle/Südwest	21	3	1	0	0	0
Halle/Verkehr	9	1	1	0	0	0
Halle/West	12	3	1	0		
Halle/Zentrum-Nord	17	4	0	0		
Halle/Zentrum	(32)	4	1	0	0	
Harzgerode	11	3	0	0	0	0
Hettstedt	22	3	0	0	0	0
Leuna				(0)	0	0
Köthen	22	2	1	(-)		
Magdeburg/Südost	5	0	0	0	0	0
Magdeburg/West	10	1	0	0	0	0
Magdeburg/Zentrum-Ost	3	2	0	0	(0)	0
Magdeburg/Zentrum	2	0	0	0	0	
Merseburg	42	5	0	0		
Naumburg	37	7	0	0	0	0
Pouch	17	0	0	0	0	0
Quedlinburg	15	5	(0)	<u> </u>		
Salzwedel	1	0	0	0	0	0
Sangerhausen	24	3	1	0	J J	U
Schkopau		5	0	0	0	0
Schönebeck	(35)	1	0	0	0	U
	11	0	0	0	0	0
Stendal			U	U	U	0
Weißenfels	29	(6)	(0)		(0)	
Weißenfels/Verkehr	15	(3)	(0)	0	(0)	0
Wernigerode	(16)	3	(0)	0	0	0
Wittenberg	12	(1)	0	0	0	0
Wolfen	14	1	0	0	_	_
Zartau/Waldmessstation		_	(0)	0	0	0
Zeitz	29	6	0	0	0	0
Zerbst	8	0	(0)			

n - Anzahl der Überschreitungen pro Station und Jahr (...) ... Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.16, Blatt 6: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Schwefeldioxid

Komponente	Schwefeldic	oxid in µg/m³				
Schutzziel/Bezugszeit	Mensch/24					
Wert	50 μg/m ³					
Wertigkeit		rteilungsschw	elle (UBS)			
Überschreitungen zulässig pro Station und Jahr	3					
Zeit	1996	1997	1998	1999	2000	2001
Messstelle/Anzahl	n	n	n	n	n	n
Amsdorf		5	(1)			
Bad Dürrenberg	53	12	1	0	0	
Bernburg	28	4	1	0	0	0
Bitterfeld	48	13	2	0	0	(0)
Blankenburg	(22)					
Brockenstation	8	(3)	0	0	0	0
Burg	18	4	(0)	0	0	0
Burg/Einzelmessstelle	23	2	0	0		
Dessau	43	2	1	0	0	0
Eisleben	(38)	6	1			
Genthin	(14)	1	0	0		
Greppin	59	17	5	6	0	0
Halberstadt	28	7	0	0	0	0
Halle/Nord	67	17	1	1	0	0
Halle/Ost	40	8	1	0	0	0
Halle/Südwest	47	13	2	0	0	0
Halle/Verkehr	30	5	1	0	0	0
Halle/West	23	6	1	0		
Halle/Zentrum-Nord	36	9	0	0		
Halle/Zentrum	(62)	11	1	0	0	
Harzgerode	29	8	1	0	0	0
Hettstedt	43	8	1	0	0	0
Leuna				(0)	0	0
Köthen	48	20	1			
Magdeburg/Südost	24	5	0	0	0	0
Magdeburg/West	39	7	1	0	0	0
Magdeburg/Zentrum-Ost	25	10	0	0	(0)	0
Magdeburg/Zentrum	16	3	0	0	0	
Merseburg	78	19	3	0		
Naumburg	68	19	4	2	0	1
Pouch	43	7	1	0	0	0
Quedlinburg	38	10	(0)			
Salzwedel	5	1	0	0	0	0
Sangerhausen	41	9	3	0		
Schkopau	(58)	17	2	0	0	0
Schönebeck	31	3	1	0	0	
Stendal	29	2	0	0	0	0
Weißenfels	64	(14)				
Weißenfels/Verkehr	49	(10)	(2)	1	(0)	0
Wernigerode	(31)	8	(0)	0	0	0
Wittenberg	46	(7)	1	0	0	0
Wolfen	34	4	1	0		
Zartau/Waldmessstation			(0)	0	0	0
Zeitz	68	12	4	0	0	0
Zerbst	34	5	(1)			

n - Anzahl der Überschreitungen pro Station und Jahr (...) ... Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.16, Blatt 7: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Schwefeldioxid

Komponente	Schwefeldic	xid in µg/m³							
Schutzziel/Bezugszeit	Ökosysteme	e/Jahr							
Wert	20 μg/m³								
Wertigkeit	Grenzwert gültig ab 19.07.2001								
Zeit	1996	1997	1998	1999	2000	2001			
Messstelle									
Bad Dürrenberg	26	13	9,4	7,3	7,0				
Burg	15	7,8	5,9	2,1 ¹⁾	2,1 ¹⁾	2,1 ¹⁾			
Brockenstation	9,0	(7,9)	2,1 ¹⁾	2,1 ¹⁾	2,1 ¹⁾	2,1 ¹⁾			
Harzgerode	18	9,9	2,1 ¹⁾	4,4	2,1 ¹⁾	2,1 ¹⁾			
Pouch	20	9,5	6,4	5,2	7,3	5,8			
Salzwedel	8,5	4,6	2,1 ¹⁾	2,1 ¹⁾	2,1 ¹⁾	2,1 ¹⁾			
Zartau/Waldmessstation			(4,7)	5,0	2,1 ¹⁾	2,1 ¹⁾			

^{1) ...} Kenngröße kleiner als die Nachweisgrenze des Gerätes, deshalb lt. Definition gleich der halben Nachweisgrenze gesetzt.

Tabelle 2.16, Blatt 8: Auswertungen gemäß der 1. EU-Tochterrichtlinie für Schwefeldioxid

Komponente	Schwefeldic	Schwefeldioxid in µg/m³								
Schutzziel/Bezugszeit	Ökosysteme	Ökosysteme/Winterhalbjahr (01.10. bis 31.03.)								
Wert	20 μg/m³	20 μg/m³								
Wertigkeit	Grenzwert gültig ab 19.07.2001									
Zeit	1995/96	1996/97	1997/98	1998/99	1999/00	2000/01				
Messstelle										
Bad Dürrenberg	43	23	10	9,2	7,9					
Brockenstation		8,1	6,8	2,11)	2,11)	2,11)				
Harzgerode	27	19	6,4	4,6	2,11)	2,11)				
Pouch	39	16	9,5	7,6	4,2	9,6				
Salzwedel	14	14 8,0 4,4 4,2 2,11)								
Zartau/Waldmessstation			6,6	5,7	4,6	2,11)				

^{1) ...} Kenngröße kleiner als die Nachweisgrenze des Gerätes, deshalb lt. Definition gleich der halben Nachweisgrenze gesetzt.

Tabelle 2.17: Jahreskenngrößen Kohlenmonoxid 2000 und 2001 in mg/m³

		ittelwerte		zentile		
Messstation	2000	2001	2000	2001		
Salzwedel	0,2	0,2	0,5	0,5		
Zartau	0,2	0,2	0,4	0,5		
Harzgerode	0,2	0,2	0,4	0,5		
Pouch	0,2	0,2	0,5	0,6		
Stendal	0,3	0,2	0,8	0,8		
Burg	0,3	(0,3)	0,7	(0,7)		
Magdeburg/Südost	0,2	0,2	0,7	0,6		
Magdeburg/West	(0,3)	0,3	(0,9)	0,8		
Halberstadt	0,2	0,2	0,9	0,8		
Wernigerode	0,3	0,3	1,0	1,0		
Bernburg	0,4	0,3	1,3	1,5		
Dessau	0,2	0,2	0,7	0,7		
Wittenberg	0,2	0,2	0,8	0,7		
Greppin	0,2	(0,2)	0,7	(0,6)		
Bitterfeld	0,2	(0,2)	0,6	(0,5)		
Hettstedt	0,2	0,2	0,7	0,8		
Halle/Nord	0,3	0,3	0,8	0,8		
Halle/Ost	0,2	0,3	0,6	0,6		
Halle/Südwest	0,3	0,3	0,8	0,7		
Schkopau	0,3	0,3	0,7	0,8		
Leuna	(0,3)	0,2	(0,7)	0,7		
Naumburg	0,3	0,3	0,9	0,7		
Zeitz	0,2	0,2	0,6	0,7		
Magdeburg/Verkehr	0,7	0,7	2,1	2,1		
Dessau/Albrechtsplatz		(0,5)		(1,3)		
Wittenberg/Verkehr	(0,9)	0,8	(2,8)	2,6		
Halle/Verkehr	0,6	0,5	1,9	1,5		
Weißenfels/Verkehr	(0,6)	0,5	(2,1)	1,7		

 $^{(\}ldots)$ \ldots Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.18: Auswertungen zur Richtlinie 2000/69/EG über Grenzwerte für Kohlenmonoxid

Komponente	Kohlenmon	oxid in mg/m	3			Kohlenmonoxid in mg/m³									
Schutzziel/Bezugszeit	Mensch/8 h														
Wert	10 mg/m ³														
Wertigkeit		jültig ab 01.0	1.2005												
- J			tündlich gleite	end) pro Jah	r										
Zeit	1996	1997	1998	1999	2000	2001									
Messstelle/Einheit	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³									
Amsdorf		1,1	(0,8)	Ŭ	J	J									
Bad Dürrenberg	2,1	1,6	1,3	1,0	1,0										
Bernburg	3,6	3,8	2,1	1,8	2,4	2,4									
Bernburg/Verkehr	(3,8)	-,-	,	,-	,	,									
Bitterfeld	2,7	1,4	1,3	1,1	1,3	(1,1)									
Blankenburg	(3,1)	.,.	1,0	-, -	1,0	(1,1)									
Burg	1,9	1,8	1,4	1,2	1,4	(1,1)									
Dessau	2,5	(2,0)	(1,0)	1,1	1,4	1,9									
Dessau/Verkehr	5,7	6,1	3,5	2,4	.,.	1,0									
Dessau/Albrechtsplatz	-,.	-,.	_,_	_, .		(1,6)									
Eisleben	2,2	2,5	1,4			(1,0)									
Genthin	2,0	3,5	1,4	1,3											
Greppin	2,4	1,6	1,1	1,0	1,1	(1,4)									
Halberstadt	(3,5)	4,8	3,3	1,5	1,9	1,5									
Halle/Nord	2,8	2,9	1,8	1,5	1,2	2,1									
Halle/Ost	2,8	2,0	1,6	1,8	1,0	2,5									
Halle/Südwest	3,0	2,3	2,4	1,9	1,2	2,6									
Halle/Verkehr	4,5	4,8	3,7	3,0	2,2	2,9									
Halle/Zentrum	2,6	2,1	1,8	1,4	1,2	2,0									
Harzgerode	1,2	1,1	0,9	0,7	0,6	0,8									
Hettstedt	3,2	2,6	1,5	1,5	1,2	1,3									
Köthen	3,5	2,1	(1,0)	1,0	, ., <u>_</u>	1,0									
Leuna	0,0	_, .	(1,0)	1,0	(1,2)	1,2									
Magdeburg/Südost	3,0	2,3	2,0	1,4	1,5	1,0									
Magdeburg/Verkehr	5,7	4,0	3,7	3,4	2,6	3,3									
Magdeburg/West	3,8	3,3	2,4	1,8	(1,5)	2,0									
Magdeburg/Zentrum	(3,5)	3,1	1,9	2,5	1,6	_,_									
Merseburg	3,1	2,5	2,1	1,7	.,0										
Naumburg	4,2	3,8	4,8	1,7	1,4	1,2									
Pouch	1,9	1,8	0,9	0,9	1,2	0,8									
Quedlinburg	4,0	7,0	1,8		.,_	5,5									
Salzwedel	1,7	1,5	1,6	1,0	0,8	0,9									
Sangerhausen	2,8	2,3	1,7	1,5	2,0	2,0									
Schkopau	2,3	2,1	(1,9)	1,2	1,2	1,6									
Schönebeck	3,3	4,0	2,2	2,5	1,7	.,0									
Stendal	2,4	2,7	1,9	1,7	1,4	2,1									
Weißenfels	2,9	2,4	.,0	-,,	.,,	_,.									
Weißenfels/Verkehr	6,2	4,7	4,9	3,5	(2,8)	2,4									
Wernigerode	3,5	3,1	2,3	1,5	2,8	2,6									
Wittenberg	2,9	3,0	3,4	3,0	1,8	1,8									
Wittenberg/Verkehr	2,0	6,8	4,4	5,5	(3,4)	3,7									
Wolfen	2,2	2,2	2,2	1,9	(0,7)	5,1									
Zartau/Waldmessstation	۷,۷	۷,۲	(1,4)	(0,7)	0,8	0,8									
Zeitz	3,2	4,9	1,7	1,2	0,8	1,8									
Zerbst	2,7	2,2	1,1	1,2	0,0	1,0									

 $^{(\}ldots)\ldots$ Anzahl der Einzelwerte kleiner als 90 % der möglichen Messwerte

Tabelle 2.19, Blatt 1: Staubniederschlag in g/(m²d) 1999 – 2001

IX:-	0.4		Jahresmittel		Max. Monats-	
Kreis	Ort	1999	2000	2001	mittel 2001	
Anhalt – Zerbst	Coswig, Antonienhüttenweg	0,07	0,13	0,08	0,19	
	Kapenmühle, Verwaltung Biosphärenreservat	0,05	0,06	0,09	0,18	
	Zerbst, An der Pforte	0,07	0,09	0,05	0,10	
Bernburg	Bernburg, Am Felsenkeller	0,16	0,14	0,17	0,58	
	Bernburg, Platz d. Jugend	0,15	0,14	0,10	0,24	
	Bernburg, Schloßkirche	0,09	0,07	0,10	0,21	
	Latdorf, Schulstraße	0,07	0,07	0,07	0,23	
	Nienburg, Bahnhofstraße	0,09	0,07	0,07	0,19	
Bitterfeld	Bitterfeld, Lindenstr.	0,06	0,04	0,04	0,09	
	Greppin, Schrebergartenstr.	0,06	0,06	0,04	0,13	
	Pouch, an B 100	0,04	0,04	0,04	0,08	
	Wolfen, Robert-Koch-Straße	0,08	0,06	0,05	0,08	
Burgenlandkreis	Deuben, Holzberg	0,37	0,29	0,18	0,28	
	Deuben, OT Naundorf, Bergstraße	0,07	0,07	0,09	0,43	
	Deuben, Parkplatz			[0,15]	[0,33]	
	Deuben, Karl-Liebknecht-Str			0,13	0,20	
	Nauendorf			0,06	0,10	
	Gleina, Neue Siedlung	0,10	0,07	0,06	0,31	
	Karsdorf, OT Wetzendorf, Gartenanlage	0,08	0,07	0,06	0,23	
	Karsdorf, Schulstr./ABebel-Str.	0,09	0,08	0,06	0,14	
	Naumburg, GStauffenberg-Str.	0,09	0,07	0,05	0,09	
	Zeitz, Freiligrathstr.	0,07	0,08	0,05	0,12	
Dessau	Dessau, Großkühnauer Weg	0,06	0,06	0,05	0,11	
	Dessau, Heidestraße	0,08	0,07	0,09	0,25	
	Dessau, Lessingstr.	0,06	0,05	0,05	0,09	
	Dessau, Albrechtsplatz	0,11	[0,12]	0,11	0,16	
Halberstadt	Halberstadt, Paulsplan	0,08	0,06	0,05	0,12	

^{[] &}lt; 10 Monatswerte

Tabelle 2.19, Blatt 2: Staubniederschlag in g/(m²d) 1999 – 2001

I/i-	0.4		Jahresmittel		Max. Monats-
Kreis	Ort	1999	2000	2001	mittel 2001
Halle	Halle - Beesen, Malderitzstr., Wasserwerk	0,07	0,10	0,05	0,14
	Halle - Kanena, Schkeuditzer Str.	0,08	0,06	0,06	0,14
	Halle - Neustadt, Nietlebener Str., DVZ	0,06	0,09	0,04	0,12
	Halle - Neustadt, Selkestraße	0,10	0,09	0,07	0,18
	Halle, Burgstraße	0,09	0,06	0,07	0,28
	Halle - Dölau, Heideweg		0,05	0,07	0,43
	Halle, Reideburger Str., LAU	0,07	0,07	0,06	0,17
	Halle, Reideburger Str., LAU	0,07	0,05	0,05	0,13
	Halle, Schleiermacherstr.	0,09	0,07	0,08	0,21
	Halle, Riebeckplatz, Merseburger Str.	0,31	0,25	0,21	0,38
Jerichower Land	Burg, Am Flickschuhpark	[0,05]	0,04	0,05	0,14
	Genthin, Ziegeleistraße	0,10	0,07	0,06	0,15
Magdeburg	Magdeburg, Wallonerberg	0,09	0,09	[0,10]	[0,25]
	Magdeburg, Wilhelm-Külz-Str.	0,08	0,08	0,06	0,10
	Magdeburg, Schönebecker Str.	0,10	0,09	0,09	0,14
Mansfelder	Amsdorf, Chausseestraße	0,10	0,11	0,10	0,23
Land	Eisleben, Mittelreihe	0,07	0,09	0,12	0,36
	Helbra, Am Pfarrholz	0,05	0,05	0,06	0,16
	Helbra, Fahrradteilewerk		0,06	0,08	0,16
	Helbra, Bolzenschachtstr.		0,09	0,13	0,35
	Hettstedt, An der Brache	0,06	0,10	0,06	0,13
	Hettstedt, Am Mühlgraben	0,06	0,04	0,04	0,07
	Hettstedt, Berggrenze, An der Bleihütte	0,13	0,21	0,10	0,25
	Hettstedt, Stockhausstr.	[0,15]	0,11	0,04	0,08
	Großörner, Hüttenstraße	0,09	0,06	0,06	0,08
	Hettstedt, Bahnhofsstr.30			0,09	0,18

^{[] &}lt; 10 Monatswerte

Tabelle 2.19, Blatt 3: Staubniederschlag in g/(m²d) 1999 – 2001

IVi-	0.4		Jahresmittel		Max. Monats-		
Kreis	Ort	1999	2000	2001	mittel 2001		
Merseburg -	Albersroda, Ortsmitte, Hauptstr.	0,10	0,06	0,10	0,29		
Querfurt	Braunsbedra, Hauptstr.	0,10	0,12	0,09	0,19		
	Merseburg, Weinberg			0,06	0,15		
	Leuna, Kreypauer Str.	0,05	0,05	0,05	0,09		
	Schkopau, LUhland-Str.	0,07	0,06	0,05	0,12		
Ohre - Kreis	Colbitz, Lysimeter - Messstelle	0,05	0,04	0,06	0,10		
Quedlinburg	Harzgerode, Freie-Feld-Lage	0,03	0,04	0,03	0,06		
	Quedlinburg, Weberstraße	0,08	0,09	0,06	0,11		
	Thale, KMarx -Str.	0,07	0,06	[0,10]	[0,21]		
Saalkreis	Oppin, Wurper Weg		0,07	0,06	0,10		
	Zöberitz, an der A14		0,05	0,05	0,10		
Salzwedel	Salzwedel, Tuchmacherstraße	0,04	0,03	0,03	0,05		
	Zartau bei Klötze, LÜSA-Waldmessstation	0,04	0,04	0,06	0,20		
Stendal	Stendal, Nachtigalplatz	0,10	0,06	0,06	0,13		
Weißenfels	Webau, OT Wählitz, Dorfstr.	0,11	0,06	0,08	0,25		
	Weißenfels, Albert-Schweitzer-Str.	0,06	0,05	0,05	0,10		
	Weißenfels, Herrenmühlenschleuse		0,06	0,05	0,15		
	Drei Annen Hohne, Forsthaus		0,06	0,05	0,09		
Wernigerode	Ilsenburg, Hochofenstr.	0,07	0,09	[0,07]	[0,15]		
	Rappbodetalsperre, Klimastation	0,04	0,05	0,05	0,10		
	Wernigerode, BhfVorplatz	0,05	0,04	0,04	0,11		
	Gräfenhainichen, LJahn-Str.	0,09	0,07	[80,0]	[0,20]		
Wittenberg	Wittenberg-Piesteritz, Nordstraße	0,09	0,12	[0,05]	[0,06]		
	Wittenberg-Piesteritz, Waldstraße			0,06	0,13		
	Wittenberg, Zimmermannstr.	0,07	0,06	0,05	0,10		
	Thießen, Mochauer Str.			0,07	0,27		
	Zschornewitz, KMarx-Str.	0,27	0,18	0,07	0,18		

^{[] &}lt; 10 Monatswerte

Tabelle 2.20, Blatt 1: Inhaltsstoffe des Staubniederschlages, Jahresmittelwerte 2001 in μg/(m²d)

Kreis	Ort	Pb	Cd	Cr	Ni	As*	Cu	Zn	V	Mn
Anhalt - Zerbst	Coswig, Antonienhüttenweg	10,9	0,1	1,6	1,5	0,6	12,7	121,3	1,0	18,1
	Kapenmühle, Verwaltung Biosphärenreservat	5,1	0,1	0,6	2,0	0,2	5,5	51,0	0,6	33,0
	Zerbst, An der Pforte 4	6,5	0,1	0,8	1,3	0,3	5,1	106,0	0,9	13,4
Bernburg	Bernburg, Am Felsenkeller	5,8	0,1	1,8	2,9	0,5	6,6	61,3	0,2	19,3
	Bernburg, Platz d. Jugend, Container	7,6	0,1	1,8	1,1	0,5	11,8	97,3	0,7	20,2
	Bernburg, Schloßkirche	11,4	0,1	1,0	5,1	0,3	8,3	57,8	0,6	19,9
	Latdorf, Schulstr.	6,7	0,1	0,9	6,0	0,4	5,6	65,8	0,7	13,9
	Nienburg, Bahnhofstr.	5,7	0,1	1,1	4,9	0,3	6,8	61,7	0,7	14,7
Bitterfeld	Bitterfeld, Lindenstr.	8,8	0,1	1,0	1,8	0,4	7,6	58,2	0,7	12,7
	Greppin, Schrebergartenstr.	7,0	0,1	1,2	11,2	0,4	8,3	70,4	1,0	12,6
	Pouch, an B 100	6,3	0,1	0,9	8,1	0,2	5,0	64,9	0,8	11,8
	Wolfen, Robert-Koch-Str.	9,3	0,1	1,5	8,4	0,3	8,9	81,6	6 0,8	13,5
Burgenlandkreis	Deuben, Holzberg	7,2	0,1	1,2	1,8	0,3	5,3	75,7	0,4	18,3
	Deuben, OT Naundorf, Bergstr.	6,8	0,1	1,1	1,5	0,3	5,7	60,3	0,5	16,8
	Deuben, Parkplatz	[11,6]	[0,1]	[2,1]	[3,7]	[0,8]	[5,8]	[83,5]	[1,1]	[30,5]
	Deuben, Karl-Liebknecht-Str.	6,5	0,1	1,8	2,1	0,4	5,6	61,2	0,6	17,7
	Naundorf	6,0	0,1	1,0	2,0	0,2	4,6	53,5	0,6	12,0
	Gleina, Neue Siedlung	7,3	0,1	0,6	1,9	0,2	5,1	52,7	0,6	10,3
	Karsdorf, OT Wetzendorf	5,0	0,1	0,8	1,1	0,2	4,3	49,8	0,6	11,6
	Karsdorf, Schulstr./ABebel-Str.	4,8	0,1	1,5	1,5	0,2	6,4	55,7	0,5	12,1
	Naumburg, GStauffenberg-Str.	10,8	0,1	1,4	3,1	0,4	7,6	112,7	0,8	14,1
	Zeitz, Freiligrathstr.	6,9	0,1	1,5	6,2	0,3	5,4	58,3	0,7	10,8
Dessau	Dessau, Großkühnauer Weg	6,5	0,1	0,8	1,0	0,3	7,1	74,7	0,8	12,1
	Dessau, Heidestr.	7,8	0,1	1,9	1,6	0,2	17,1	64,1	0,6	18,0
	Dessau, Lessingstr.	4,6	0,1	0,8	1,2	0,2	4,6	50,6	0,6	8,2
	Dessau, Albrechtsplatz	17,1	0,1	3,3	5,4	0,6	20,8	135,1	1,5	32,2
Halberstadt	Halberstadt, Paulsplan	5,7	0,1	1,2	2,9	0,2	7,2	83,3	0,7	14,8

^{[] &}lt; 10 Monatswerte

^{*} Arsen ohne 2. Quartal

Tabelle 2.20, Blatt 2: Inhaltsstoffe des Staubniederschlages, Jahresmittelwerte 2001 in μg/(m²d)

Kreis	Ort	Pb	Cd	Cr	Ni	As*	Cu	Zn	V	Mn
Halle	Halle - Beesen, Malderitzstr., Wasserwerk	5,4	0,2	2,5	4,0	0,3	5,0	58,0	0,6	12,3
	Halle - Kanena, Schkeuditzer Str.	9,9	0,1	1,1	2,6	0,2	7,3	73,3	0,7	15,4
	Halle - Neustadt, Nietlebener Str., DVZ	6,4	0,1	1,2	3,1	0,2	8,0	70,1	0,7	13,1
	Halle - Neustadt, Selkestr.	9,7	0,1	1,3	2,3	0,2	9,3	64,7	0,7	19,9
	Halle, Burgstr.	9,2	0,1	1,1	11,0	0,2	6,8	61,6	0,6	12,8
	Halle - Dölau, Heideweg	6,0	0,1	0,8	7,5	0,4	6,9	67,9	0,6	12,0
	Halle, Reideburger Str., LAU	7,4	0,1	1,4	4,3	0,2	7,5	73,4	0,6	14,4
	Halle, Reideburger Str., LAU	5,9	0,1	1,2	11,0	0,2	7,1	74,6	0,6	12,0
	Halle, Schleiermacher Str.	8,4	0,1	1,9	4,7	0,3	8,6	80,0	0,6	19,2
	Halle, Riebeckplatz, Merseburger Str.	32,0	0,5	20,5	14,9	1,3	52,6	223,5	2,0	91,5
Jerichower Land	Burg, Am Flickschuhpark	5,5	0,1	1,3	2,9	0,2	5,9	61,5	0,7	14,6
	Genthin, Ziegeleistr.	8,1	0,1	1,5	9,0	0,2	7,6	72,2	1,0	21,6
Magdeburg	Magdeburg, Wallonerberg	[11,7]	[0,1]	[1,8]	[4,7]	[0,2]	[17,9]	[95,0]	[0,7]	[24,6]
	Magdeburg, Wilhelm-Külz-Str.	5,7	0,2	1,4	4,6	0,1	7,5	60,7	0,8	16,1
	Magdeburg, Schönebecker Str.	9,5	0,1	3,6	10,3	0,2	9,2	76,8	0,7	22,2
Mansfelder	Amsdorf, Chausseestr.	10,9	0,1	3,3	2,8	0,5	12,1	70,0	0,9	46,8
Land	Eisleben, Mittelreihe	62,6	0,2	5,7	3,6	1,2	119,7	261,5	6,8	94,3
	Helbra, Am Pfarrholz	12,1	0,1	0,9	1,8	0,8	20,9	128,2	1,4	15,7
	Helbra, Fahrradteilewerk, Parkplatz	60,7	0,6	2,1	4,8	1,6	84,3	297,9	3,2	44,5
	Helbra, Bolzenschachtstr.	59,6	0,4	4,5	4,4	2,7	101,7	282,1	2,4	51,6
	Hettstedt, An der Brache	113,8	1,5	2,9	13,1	2,2	868,0	581,5	1,0	24,7
	Hettstedt, Am Mühlgraben	22,1	0,4	1,1	5,0	0,5	137,7	154,8	0,8	17,6
	Hettstedt, Berggrenze, An d. Bleihütte	101,7	1,4	2,3	12,5	2,0	490,9	396,6	1,5	28,8
	Hettstedt, Stockhausstr.	46,8	0,7	1,0	4,4	1,7	204,6	209,4	0,8	16,4
	Großörner, Hüttenstr.	51,2	0,7	2,0	12,0	0,9	325,5	271,1	1,4	27,6
	Hettstedt, Bahnhofsstr. 30	[32,4]	[0,5]	[1,4]	[11,6]	[0,9]	[174,3]	[176,4]	[1,0]	[26,8]

^{[] &}lt; 10 Monatswerte

^{*} Arsen ohne 2. Quartal

Tabelle 2.20, Blatt 3: Inhaltsstoffe des Staubniederschlages, Jahresmittelwerte 2001 in μg/(m²d)

Kreis	Ort	Pb	Cd	Cr	Ni	As*	Cu	Zn	V	Mn
Merseburg -	Albersroda, Ortsmitte	3,6	0,1	0,9	1,2	0,2	5,7	54,3	0,4	17,4
Querfurt	Braunsbedra, Hauptstr.	13,3	0,1	1,1	1,4	0,4	8,9	82,9	0,7	17,0
	Merseburg, Weinberg	4,5	0,2	0,9	1,7	0,1	4,9	53,8	0,5	11,4
	Leuna, Kreypauer Str.	5,3	0,4	1,4	6,9	0,4	6,0	84,8	0,8	13,4
	Schkopau, LUhland-Str.	6,3	0,1	4,3	10,7	0,2	10,2	68,3	0,7	12,1
Ohre - Kreis	Colbitz, Lysimeter - Messstelle	8,5	0,1	0,8	4,6	0,4	12,3	79,9	0,7	91,3
Quedlinburg	Harzgerode, Freie-Feld-Lage	4,1	0,1	0,7	5,6	0,1	12,2	96,0	0,5	9,9
	Quedlinburg, Weberstr.	9,1	0,1	1,2	3,9	0,2	8,6	74,4	1,0	21,3
	Thale, KMarx -Str.	[12,1]	[0,2]	[2,0]	[4,6]	[0,3]	[22,7]	[105,0]	[0,8]	[35,6]
Saalkreis	Oppin, Wurper Weg	5,0	0,1	0,7	4,0	0,2	5,3	53,4	0,6	13,0
	Zöberitz, an der A14 , MP 4	7,0	0,1	0,8	3,6	0,2	13,8	83,1	0,5	10,6
Salzwedel	Salzwedel, Tuchmacherstr.	4,9	0,1	1,0	4,2	0,3	4,9	50,4	0,7	11,0
	Zartau, Waldmessstation	5,0	0,1	1,1	7,5	0,3	5,3	128,4	1,2	13,4
Stendal	Stendal, Nachtigalplatz	16,1	0,1	1,8	3,0	0,4	13,7	94,4	0,9	25,2
Weißenfels	Webau, OT Wählitz	6,3	0,1	0,9	2,0	0,5	3,6	43,1	0,5	12,5
	Weißenfels, Albert-Schweitzer-Str.	7,9	0,1	1,0	1,3	0,3	7,0	67,8	0,7	11,4
	Weißenfels, Herrenmühlenschleuse	7,5	0,1	0,9	7,1	0,3	13,5	56,3	0,7	11,5
Wernigerode	Dreiannenhohne, Forsthaus	8,9	0,1	1,0	2,8	0,3	12,9	105,6	1,5	12,8
	llsenburg, Hochofenstr.	[13,1]	[0,1]	[1,3]	[4,8]	[0,5]	[9,7]	[95,8]	[1,0]	[21,9]
	Rappbodetalsperre, Klimastation	5,4	0,1	0,8	2,0	0,2	4,8	85,4	0,4	15,5
	Wernigerode, BhfVorplatz	6,0	0,1	1,0	1,8	0,2	7,3	123,5	0,7	15,5
Wittenberg	Gräfenhainichen, LJahn-Str.	[9,0]	[0,1]	[1,5]	[1,8]	[0,3]	[13,7]	[93,0]	[0,9]	[19,7]
	Wittenberg-Piesteritz, Nordstr.	[8,3]	[0,1]	[1,2]	[1,9]	[0,3]	[7,1]	[97,9]	[0,8]	[13,7]
	Wittenberg-Piesteritz, Waldstr.	7,8	0,1	1,3	1,4	0,2	6,4	78,1	0,9	11,1
	Wittenberg, Zimmermannstr.	6,6	0,1	1,6	1,8	0,3	7,3	71,3	0,9	12,8
	Thießen, Mochauer Str.	6,4	0,1	0,8	3,3	0,3	4,7	69,9	0,9	13,0
	Zschornewitz, KMarx-Str.	6,5	0,1	1,5	1,7	0,2	4,5	90,9	0,9	16,4

^{[] &}lt; 10 Monatswerte

^{*} Arsen ohne 2. Quartal

Tabelle 2.21: Gesamtdepositionsmessungen mit Bergerhoff-Sammlern auf LÜSA-Messstationen

Jahresmittelwerte der Anionen in mg/(m²d)															
		Chlorid			Fluorid			Nitrat			Sulfat		se	k. Phospl	nat
	1999	2000	2001	1999	2000	2001	1999	2000	2001	1999	2000	2001	1999	2000	2001
Bitterfeld, Lindenstr.	1,45	1,46	1,33	0,04	0,04	0,04	5,69	5,57	5,37	7,66	6,99	5,60	0,13	0,15	0,20
Dessau, Lessingstr.	1,15	1,27	1,34	0,04	0,03	0,05	5,23	5,16	5,58	6,54	6,29	5,83	0,11	0,17	0,31
Halle, Reideburger Str.	1,24	1,13	1,15	0,03	0,03	0,04	4,17	5,10	4,53	5,37	5,87	4,91	0,13	0,13	0,47
Harzgerode, Freie-Feld-Lage	1,01	1,09	1,55	0,03	0,03	0,05	5,66	4,85	5,69	4,24	3,69	4,16	0,17	0,15	0,26
Magdeburg, Universitätsplatz	1,39	1,27	1,86	0,03	0,03	0,04	4,34	5,28	5,03	4,74	5,29	6,53	0,14	0,22	0,12
Salzwedel, Tuchmacherstr.	2,20	1,91	1,65	0,03	0,03	0,04	6,04	5,93	5,28	4,56	4,34	4,25	0,08	0,15	0,12
Wittenberg, Zimmermannstr.	1,73	1,26	1,46	0,03	0,03	0,05	4,81	4,88	6,01	6,20	5,71	5,28	0,12	0,13	0,26
Zeitz, Freiligrathstr.	1,07	1,08	1,21	0,02	0,03	0,04	4,21	3,85	5,44	6,90	5,23	5,07	0,27	0,32	0,37
Pouch, an B 100		1,13	1,18		0,02	0,03		6,09	5,43		5,39	4,97		0,09	0,40
Stendal, Nachtigalplatz		[1,02]	2,27		[0,03]	0,04		[4,63]	5,06		[5,01]	5,16		[0,30]	0,34
Leuna, Kreypauer Str.		0,71	1,00		0,02	0,04		4,50	4,85		6,08	6,25		0,19	0,17
arithm. Mittel	1,40	1,31	1,44	0,03	0,03	0,04	5,02	5,08	5,37	5,77	5,43	5,21	0,14	0,18	0,27
Maximum	2,20	1,91	1,86	0,04	0,04	0,05	6,04	5,93	6,01	7,66	6,99	6,53	0,27	0,32	0,47
Minimum	1,01	1,08	1,15	0,02	0,03	0,04	4,17	3,85	4,53	4,24	3,69	4,16	0,11	0,13	0,12
Jahresmittelwerte der Kationen in m	ng/(m²d)														
	A	mmoniun	n		Natrium			Kalium		Calcium			N	/lagnesiur	n
	1999	2000	2001	1999	2000	2001	1999	2000	2001	1999	2000	2001	1999	2000	2001
Bitterfeld, Lindenstr.	2,18	2,62	2,48	1,31	1,59	1,14	0,35	0,32	0,29	1,84	1,56	1,26	0,34	0,26	0,17
Dessau, Lessingstr.	1,89	2,12	2,75	0,96	0,99	1,02	0,27	0,29	0,37	2,07	1,86	1,81	0,19	0,20	0,19
Halle, Reideburger Str.	1,85	1,90	1,96	1,02	1,06	1,04	0,91	0,33	1,00	1,97	2,02	1,43	0,23	0,24	0,23
Harzgerode, Freie-Feld-Lage	1,90	1,82	1,99	1,10	0,97	1,48	0,28	0,30	0,28	0,80	1,19	0,80	0,18	0,19	0,16
Magdeburg, Universitätsplatz	1,09	2,07	1,55	1,09	1,17	1,28	0,44	0,96	0,71	2,04	2,08	4,09	0,18	0,22	0,28
Salzwedel, Tuchmacherstr.	1,62	2,10	2,06	1,64	1,61	1,22	0,24	0,27	0,25	1,71	1,23	1,01	0,25	0,21	0,17
Wittenberg, Zimmermannstr.	2,46	3,20	3,04	1,42	1,11	1,30	0,41	0,33	0,40	1,69	1,41	1,21	0,21	0,15	0,17
Zeitz, Freiligrathstr.	2,21	1,98	2,11	1,06	0,87	1,08	0,77	0,79	0,64	1,60	1,57	1,29	0,29	0,33	0,24
Pouch, an B 100		2,40	2,52		1,06	1,10		0,27	0,32		1,25	0,92		0,18	0,20
Stendal, Nachtigalplatz		[1,82]	2,19		[0,92]	1,47		[0,37]	0,79		[2,37]	2,31		[0,27]	0,47
Leuna, Kreypauer Str.		1,95	2,11		0,74	1,03		0,43	0,31		1,91	1,59		0,17	0,17
arithm. Mittel	1,90	2,23	2,24	1,20	1,17	1,20	0,46	0,45	0,49	1,72	1,62	1,61	0,24	0,22	0,20
Maximum	2,46	3,20	3,04	1,64	1,61	1,48	0,91	0,96	1,00	2,07	2,08	4,09	0,34	0,33	0,28
Minimum	1,09	1,82	1,55	0,96	0,87	1,02	0,27	0,29	0,28	0,80	1,19	0,80	0,18	0,15	0,16

^[] weniger als 10 Monatswerte

Tabelle 2.22: Kongenerenverteilung der PCDD/F – Depositionen in ng/Probe in den Quartalsproben 2001 in Hettstedt

l/an ann ann	ŀ	lettstedt, St	ockhausstr			Hettstedt,	Museum		Н	ettstedt, Mo	lmecker St	·.	Hettstedt, Pappelweg				
Kongenere	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	
2378-TCDD	0,007	≤ 0,004	≤ 0,013	≤ 0,004	0,007	0,011	≤ 0,007	≤ 0,006	0,003	≤ 0,004	≤ 0,011	≤ 0,004	≤ 0,004	≤ 0,006	≤ 0,007		
12378-PeCDD + 12467-/12489- PeCDD*	0,010	0,006	≤ 0,012	≤ 0,008	0,020	0,027	0,037	0,008	0,012	0,010	≤ 0,011	≤ 0,010	0,009	0,010	≤ 0,009		
123478-HxCDD + 123469-HxCDD*	0,012	0,009	≤ 0,011	≤ 0,010	0,017	0,033	0,033	≤ 0,009	0,008	0,016	≤ 0,011	≤ 0,011	0,011	0,009	≤ 0,009		
123678-HxCDD	0,018	0,010	≤ 0,011	≤ 0,010	0,028	0,050	0,066	0,012	0,013	0,014	≤ 0,011	0,009	0,018	0,018	0,009		
123789-HxCDD	0,015	0,012	≤ 0,011	≤ 0,010	0,019	0,034	0,037	0,010	0,011	0,013	≤ 0,010	≤ 0,009	0,013	0,011	≤ 0,008		
1234678-HpCDD	0,092	0,096	0,043	0,060	0,170	0,230	0,310	0,097	0,100	0,096	0,040	0,063	0,120	0,100	0,053		
12346789-OCDD	0,280	0,230	0,160	0,150	0,370	0,670	0,750	0,230	0,310	0,400	0,100	0,200	0,370	0,280	0,190		
2378-TCDF	0,021	0,013	0,010	0,009	0,032	0,053	0,073	0,023	0,013	0,018	0,009	0,015	0,014	0,030	0,015		
12378-PeCDF + 12346(8)-PeCDF*	0,011	0,014	0,006	0,010	0,033	0,066	0,098	0,022	0,019	0,016	0,009	0,015	0,017	0,026	0,020		
23478-PeCDF	0,025	0,021	0,013	0,014	0,069	0,130	0,160	0,033	0,025	0,024	0,013	0,017	0,032	0,043	0,030		
123478-HxCDF + 124689-HxCDF*	0,031	0,025	0,020	0,020	0,077	0,150	0,330	0,055	0,031	0,038	0,020	0,029	0,038	0,061	0,049		
123678-HxCDF	0,027	0,022	0,017	0,018	0,074	0,130	0,210	0,040	0,023	0,030	0,014	0,025	0,040	0,050	0,030		
123789-HxCDF	0,009	0,005	≤ 0,010	≤ 0,007	0,012	0,014	0,031	≤ 0,007	≤ 0,007	0,005	≤ 0,009	≤ 0,008	0,006	0,007	≤ 0,006		
234678-HxCDF	0,038	0,032	0,018	0,020	0,120	0,190	0,280	0,050	0,037	0,034	0,020	0,041	0,078	0,057	0,040		
1234678-HpCDF	0,110	0,120	0,062	0,094	0,390	0,580	1,200	0,220	0,110	0,160	0,073	0,127	0,240	0,250	0,160		
1234789-HpCDF	0,024	0,020	≤ 0,029	0,018	0,059	0,110	0,280	0,030	0,026	0,028	≤ 0,029	0,025	0,037	0,046	0,027		
12346789-OCDF	0,190	0,180	0,120	0,150	0,630	1,100	2,700	0,260	0,160	0,240	0,130	0,370	0,400	0,370	0,270		
Summe	0,92	0,82	0,57	0,61	2,13	3,58	6,60	1,11	0,91	1,15	0,52	0,98	1,45	1,37	0,93		
I - TE in pg/m²d	19,5	11,3	6,8	7,4	55,6	66,0	111,5	20,8	17,3	14,8	7,3	11,1	21,2	22,3	16,0		
I - TE in pg/m²d incl. NWG	19,5	12,9	18,4	13,0	55,6	66,0	114,9	24,5	17,7	16,4	17,5	16,7	23,0	24,6	22,8		
Jahresmittel I - TE in pg/m²d	16				65					17				24			

^{*} gaschromatographisch mit der Kapillarsäule DB - Dioxin nicht trennbare Kongenere

Tabelle 2.23: Kongenerenverteilung der PCDD/F – Depositionen in ng/Probe in den Quartalsproben 2001

Managanaya	lls	senburg, P	ulvermühl	е		Eisleben, N	Mittelreihe		Нє	elbra, Fahr	radteilewe	rk	Helbra, Bolzenschachtstr.			
Kongenere	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01
2378-TCDD	≤ 0,003	≤ 0,004	≤ 0,007	≤ 0,005	≤ 0,006	≤ 0,005	≤ 0,008	≤ 0,005	≤ 0,004	≤ 0,007	≤ 0,006	≤ 0,005	≤ 0,005	0,007	≤ 0,006	≤ 0,009
12378-PeCDD + 12467-/12489- PeCDD*	0,007	0,007	≤ 0,011	≤ 0,008	0,011	0,012	0,008	≤ 0,009	≤ 0,008	≤ 0,011	0,008	≤ 0,010	≤ 0,008	0,016	≤ 0,007	≤ 0,014
123478-HxCDD + 123469-HxCDD*	0,006	≤ 0,006	≤ 0,009	≤ 0,009	0,007	0,017	0,011	≤ 0,011	0,006	≤ 0,008	0,012	≤ 0,013	0,007	0,014	≤ 0,007	≤ 0,018
123678-HxCDD	0,010	0,008	0,015	≤ 0,010	0,011	0,017	0,018	≤ 0,011	0,011	0,008	0,025	≤ 0,011	0,012	0,017	≤ 0,007	≤ 0,014
123789-HxCDD	0,007	0,010	≤ 0,009	≤ 0,009	0,008	0,019	0,010	≤ 0,011	0,009	≤ 0,007	0,021	≤ 0,011	0,010	0,023	≤ 0,007	≤ 0,015
1234678-HpCDD	0,080	0,110	0,066	0,052	0,088	0,170	0,100	0,046	0,040	0,031	0,120	0,034	0,057	0,080	0,024	0,053
12346789-OCDD	0,210	0,270	0,160	0,160	0,220	0,610	0,390	0,180	0,120	0,110	0,360	0,120	0,160	0,160	0,083	0,170
2378-TCDF	0,014	0,019	0,011	0,009	0,015	0,029	0,017	0,012	0,006	0,006	0,013	0,006	0,011	0,030	0,005	0,034
12378-PeCDF + 12346(8)-PeCDF*	0,011	0,013	0,013	0,007	0,012	0,037	0,022	0,015	0,005	0,006	0,014	0,006	0,010	0,048	0,005	0,015
23478-PeCDF	0,014	0,021	0,015	0,008	0,028	0,060	0,032	0,018	0,008	0,007	0,019	0,009	0,013	0,047	0,007	0,063
123478-HxCDF + 124689-HxCDF*	0,012	0,033	0,027	0,018	0,032	0,120	0,070	0,044	0,012	0,010	0,033	0,013	0,014	0,070	0,011	0,026
123678-HxCDF	0,011	0,022	0,022	0,014	0,022	0,100	0,052	0,042	0,010	0,010	0,024	0,012	0,013	0,110	0,006	0,027
123789-HxCDF	≤ 0,004	≤ 0,004	≤ 0,008	≤ 0,008	≤ 0,007	0,009	≤ 0,005	≤ 0,009	≤ 0,005	≤ 0,005	≤ 0,005	≤ 0,010	≤ 0,005	0,008	≤ 0,005	≤ 0,012
234678-HxCDF	0,014	0,029	0,026	0,015	0,028	0,075	0,057	0,028	0,009	0,008	0,021	0,007	0,015	0,041	0,010	0,023
1234678-HpCDF	0,040	0,110	0,120	0,076	0,150	0,630	0,560	0,200	0,027	0,037	0,170	0,050	0,046	0,230	0,030	0,093
1234789-HpCDF	0,010	0,016	0,024	0,022	0,028	0,073	0,046	0,021	≤ 0,011	≤ 0,016	0,012	≤ 0,028	0,011	0,019	≤ 0,023	≤ 0,041
12346789-OCDF	0,042	0,098	0,085	0,140	0,170	1,000	0,540	0,260	0,035	0,043	0,120	≤ 0,093	0,050	0,062	0,048	≤ 0,100
Summe	0,50	0,78	0,63	0,57	0,84	2,98	1,95	0,92	0,33	0,33	0,98	0,44	0,45	0,98	0,29	0,73
I - TE in pg/m²d	8,3	13,6	8,9	8,2	15,9	34,0	25,7	17,7	4,9	3,5	15,5	4,6	7,1	44,3	3,3	20,8
I - TE in pg/m²d incl. NWG	9,5	15,4	14,8	16,4	18,6	36,0	29,6	26,6	8,8	9,0	18,9	11,6	11,1	44,3	8,6	31,5
Jahresmittel I - TE in pg/m²d	1 ² d 14				28			12				22				

^{*} gaschromatographisch mit der Kapillarsäule DB - Dioxin nicht trennbare Kongenere

Tabelle 2.24: Verteilung der PCB-Leitkongeneren in den Quartalsproben in ng/Probe und Depositionswerte 2001 in ng/(m²d)

IUPAC	Vanganara	He	ttstedt, S	tockhaus	str.		Hettstedt,	Museum	1	Het	tstedt, M	olmecker	Str.	Н	ettstedt, I	Pappelwe	eg
Nr.	Kongenere	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01
28	244' - TrCB	1,11	1,54	5,35	4,80	6,01	12,8	15,6	19,9	1,81	1,67	6,19	6,80	2,17	2,40	5,18	7,24
52	22'55' - TCB	0,63	0,48	11,1	10,2	3,46	5,74	16,4	22,4	0,91	0,70	11,3	13,7	1,25	1,24	10,8	12,8
101	22'455' - PeCB	1,10	0,89	10,6	10,9	4,73	9,00	17,7	23,0	1,44	1,81	12,1	11,5	2,08	1,50	12,0	8,42
153	22'44'55' - HxCB	1,79	1,34	9,48	10,6	8,83	11,0	18,2	20,6	3,11	6,64	10,6	8,49	3,64	2,04	8,27	6,23
138	22'344'5' - HxCB	2,10	1,12	6,33	7,74	10,3	11,7	15,4	20,3	3,00	5,91	7,01	5,61	4,01	1,78	8,15	4,70
180	22'344'55' - HpCB	0,54	0,86	6,33	6,20	2,38	4,66	14,0	12,8	0,71	8,66	6,60	1,64	0,84	1,48	6,92	3,54
Summe 6 F	PCB	7,3	6,2	49,2	50,4	35,7	54,9	97,3	119,0	11,0	25,4	53,8	47,7	14,0	10,4	51,3	42,9
Deposition	6 PCB in ng/(m²d)	3,2	2,4	23,9	23,3	20,2	21,5	47,2	55,1	4,9	9,9	26,1	22,1	6,2	4,1	24,9	19,9
Jahresmitte	el in ng/(m²d)	12					36				15				1	3	
	·																
IUPAC	Kongonoro	llsenburg, Pulvermühle				Eisleben, Mittelreihe				Helbra, Fahrradteilewerk				Hell	bra, Bolze	enschach	tstr.
Nr.	Kongenere	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01
28	244' - TrCB	1,62	0,91	5,54	6,32	0,65	1,14	6,10	3,28	0,50	0,75	5,28	4,91	0,62	0,54	4,62	33,5
52	22'55' - TCB	0,49	0,39	11,5	13,7	0,30	0,49	12,3	10,3	0,18	0,28	9,77	10,2	0,27	0,22	10,7	10,4
101	22'455' - PeCB	0,80	1,44	11,9	11,8	0,30	0,99	12,0	6,15	0,40	0,32	9,94	5,71	0,34	0,41	10,4	5,97
153	22'44'55' - HxCB	1,99	3,93	11,4	8,41	0,85	1,19	11,8	3,58	2,13	0,66	9,75	3,61	0,87	0,56	6,95	3,52
138	22'344'5' - HxCB	1,62	2,75	7,53	5,08	0,69	1,94	7,45	2,08	1,46	0,50	6,00	2,06	0,61	0,96	5,77	2,22
180	22'344'55' - HpCB	0,79	1,78	6,63	3,57	0,33	1,02	8,12	1,45	1,02	0,37	5,28	1,40	0,27	0,47	5,46	1,45
Summe 6 PCB		7,3	11,2	54,5	48,9	3,1	6,8	57,8	26,8	5,7	2,9	46,0	27,9	3,0	3,2	43,9	57,1
Deposition 6 PCB in ng/(m²d)		3,0	5,1	23,1	20,3	1,4	2,6	28,0	12,4	2,5	1,1	22,3	12,9	1,3	1,2	21,3	26,4
Jahresmittel in ng/(m²d)		12			10			9				11					

Tabelle 2.25: Kongenerenverteilung der Depositionen dioxinähnlicher PCB in ng/Probe in den Quartalsproben 2001

IUPAC		Het	tstedt. S	tockhaus	str.	F	lettstedt.	Museun	n	Hett	stedt, Mo	olmecker	Str.	He	ettstedt. I	Pappelwe	ea
Nr.	Kongenere	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01
77	33'44' - TCB	0,26	0,21	< 0,03	0,60	0,91	0,84	1,15	1,23	0,35	< 0,07	< 0,03	0,78	0,38	0,18	0,52	0,36
81	344'5 - TCB	0,04	0,07	< 0,03	0,50	0,09	< 0,07	< 0,03	0,26	0,07	< 0,07	< 0,03	< 0,03	0,06	< 0,07	< 0,03	0,63
105	233'44' - PeCB	0,45	2,29	0,65	1,45	3,20	4,27	4,79	8,48	0,77	0,43	1,00	1,19	1,19	0,67	1,19	1,64
114	2334'5 - PeCB	0,05	< 0,07	0,06	0,17	0,14	0,28	0,26	0,26	0,07	< 0,07	0,23	0,17	0,05	< 0,07	0,10	0,11
118	23'44'5 - PeCB	1,11	0,73	2,36	3,00	6,30	9,12	10,20	15,60	1,77	1,65	2,77	2,83	2,52	1,22	3,47	3,48
123	2'344'5 - PeCB	0,04	< 0,07	0,25	0,33	0,10	0,34	0,61	1,11	0,05	< 0,07	< 0,03	0,25	0,05	0,12	0,28	0,23
126	33'44'5 - PeCB	0,06	< 0,07	0,69	0,52	0,07	0,26	0,61	0,47	< 0,02	0,02	< 0,03	1,28	0,04	< 0,07	0,74	0,72
156	233'44'5 - HxCB	0,33	0,28	0,58	0,85	1,77	2,02	1,20	3,68	0,47	0,51	0,87	0,75	0,70	0,58	1,05	0,69
157	233'44'5' - HxCB	0,05	< 0,07	0,14	0,15	0,34	0,40	2,74	0,78	0,10	0,10	< 0,03	0,04	0,14	0,38	0,47	0,18
167	23'44'55' - HxCB	0,11	0,34	1,23	0,91	0,58	2,41	0,55	4,31	0,17	0,65	1,02	0,75	0,22	2,54	0,98	0,91
169	33'44'55' - HxCB	< 0,05	< 0,07	0,07	< 0,03	< 0,05	< 0,07	2,97	0,04	< 0,05	< 0,07	0,11	< 0,03	< 0,05	0,09	0,08	0,04
189	233'44'55' - HpCB	0,05	< 0,07	0,11	0,1	0,14	0,22	0,09	0,32	0,07	0,04	0,12	0,07	0,09	< 0,07	0,14	0,09
Summe 12		2,6	4,3	6,2	8,6	13,7	20,3	25,2	36,5	4,0	3,8	6,3	8,2	5,5	6,1	9,1	9,1
TE in pg/(2,8	2,0	34,2	24,6	5,2	11,3	45,8	24,3	0,3	1,0	1,0	59,7	2,2	0,6	37,0	34,0
	(m²d) incl. NWG	3,1	3,2	34,2	24,8	5,5	11,6	45,8	24,3	1,4	1,3	2,4	59,8	2,4	3,4	37,0	34,0
Jahresmitte	el TE in pg/(m²d)		1	5			2	1		16					1	8	
								-									
IUPAC	Kongenere	llsenburg, Pulvermühle				Eisleben, Mittelreihe				Helbra, Fahrradteilewerk				Helb		enschach	itstr.
INI.		1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01	1/01	2/01	3/01	4/01
77		0,22	< 0,07	< 0,03	1,73	0,07	0,47	< 0,03	0,34	0,17	0,12	< 0,03	0,12	0,12	< 0,07	< 0,03	0,51
81	344'5 - TCB	0,08	< 0,07	< 0,03	< 0,03	0,03	0,31	< 0,03	< 0,03	0,08	0,10	< 0,03	< 0,03	0,05	< 0,07	< 0,03	< 0,03
105		0,11	0,13	0,58	0,52	0,11	0,66	0,58	0,33	0,10	0,14	0,53	0,35	0,13	0,14	0,53	0,31
114	2334'5 - PeCB	0,12	0,05	0,06	0,16	0,03	< 0,07	0,14	0,43	0,04	< 0,07	0,19	< 0,03	0,04	< 0,07	0,05	0,06
118		0,44	0,49	2,18	1,67	0,30	0,77	2,07	1,00	0,26	0,20	1,59	1,06	0,23	0,17	1,77	0,96
123	2'344'5 - PeCB	< 0,04	< 0,07	0,25	0,23	< 0,04	< 0,07	0,31	0,11	< 0,04	< 0,07	0,32	< 0,03	< 0,04	< 0,07	0,20	0,12
126		< 0,02	< 0,07	0,70	1,49	0,02	0,17	0,97	0,87	< 0,02	0,13	< 0,03	1,19	0,03	0,09	0,61	0,88
156	233'44'5 - HxCB	0,11	0,25	0,74	0,46	0,12	0,31	0,91	0,18	0,17	0,12	0,51	0,18	0,1	0,15	0,61	0,18
157	233'44'5' - HxCB	0,18	< 0,07	0,12	< 0,03	< 0,04	0,27	0,13	0,07	0,05	0,00	0,00	0,15	0,04	0,15	< 0,03	0,09
167	23'44'55' - HxCB	0,04	0,39	0,97	0,57	0,05	1,23	0,85	0,25	0,06	0,12	0,62	0,31	0,04	0,46	0,65	0,23
169	33'44'55' - HxCB	< 0,05	< 0,07	0,09	< 0,03	< 0,05	< 0,07	< 0,03	0,05	< 0,05	< 0,07	< 0,03	< 0,03	< 0,05	< 0,07	0,09	< 0,03
189	233'44'55' - HpCB	0,06	0,08	0,09	0,06	0,07	0,46	0,13	0,05	0,06	< 0,07	0,09	0,04	0,05	< 0,07	0,10	0,04
	mme 12 PCB 1,5 1,8 5,8 7,0		0,9	4,9	6,2	3,7	1,1	1,2	4,0	3,5	0,9	1,6	4,7	3,4			
TE in pg/(0,1	0,9	30,4	62,1	0,9	6,9	47,5	40,7	0,1	5,1	0,3	55,2	1,4	3,6	30,3	40,9
TE in pg/((m²d) incl. NWG	1,2	3,6	30,4	62,3	1,2	7,2	47,6	40,7	1,2	5,4	1,9	55,3	1,6	3,9	30,3	41,0
Jahresmitte	el TE in pg/(m²d)		2	5			2	3			1	5		18			

Tabelle 3.2.1: Regierungsbezirk Dessau, Schadensereignisse 2001

Nr	Ort/Anlage	Datum	Ereignis	Stoff/Menge	Zeitraum	4. BlmSchV	Schaden	Störfall-VO	Erlass MLU
1.	Kraftwerk/ Holzverbrennung	04/01	Brand in Brecheranla- ge	Holz	6.00-12.00	Х	Sachschaden	-	х
2.	Chemiebetrieb zur Herstellung von Silanen	07/01	Brand	Asche unbekannter Zusammensetzung	20.00-22.00	х	Sachschaden Ca. 5.000	-	Х

Tabelle 3.2.2: Regierungsbezirk Halle, Schadensereignisse 2001

Nr.	Ort/Anlage	Datum	Ereignis	Stoff/Menge	Zeitraum	4. BlmSchV	Schaden	Störfall-VO	Erlass MLU
1	Lagerhalle auf einem ehemali- gen Flugplatz	8/01	Brand	- Bauschuttabfälle, - Holz		1	Sachschäden	-	Х
2	Lagerhalle einer Sortieranlage für Bauabfälle	8/01	Brand	hausmüllähnliche Abfälle		-	Sachschäden	-	Х
3	Phenolsynthese-Anlage	10/01	Explosion eines Behälters mit Brand und Nachfolgeexplosionen	- Cumolhydro- peroxid, - Cumol, - Phenol, - Aceton		4.1/Sp. 1	- 3 Personen leichtverletzt, - >2 Millionen EURO	Anhang VI, Teil 1, I., Nr. 4a	-

Tabelle 3.2.3: Regierungsbezirk Magdeburg, Schadensereignisse 2001

Nr.	Ort/Anlage	Datum	Ereignis	Stoff/Menge	Zeitraum	4. BlmSchV	Schaden	Störfall-VO	Erlass MLU
1	Anlage zur Herstellung von organischen Peroxiden	03/01	Brand	2-Ethylhexan- säurechlorid/ 50 kg; resultierende Brandgase wie Kohlendioxid und Chlorwasserstoff	kurzzeitig	4.1 b	Sachschaden durch Verbrennun- gen in ca. 2m Um- kreis der Anlage; Beschädigung der Dachhaut und des Stahlbaus	-	Х
2	Reifenlager	09/01	Brand	500 - 1000 t Rei- fen; resultierende Brand- und Rauchgase; Pyrolyseprodukte in geringem Um- fang	ca. 3 Tage	8.12 Sp. 1 in Verbindung mit 8.14 Sp. 2	Sachschaden; Starke Brand- und Rauchgas- entwicklung auch außerhalb des Firmengeländes , jedoch auf unbe- wohntem Gebiet	-	Х

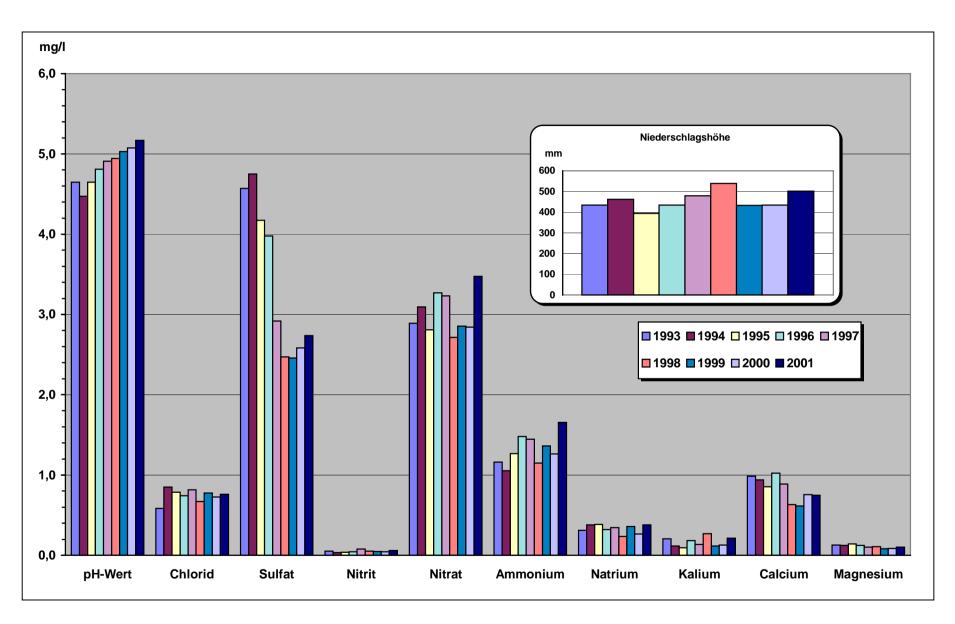


Abbildung 2.1: Ionenkonzentration in der Nassdeposition an der Station Weißenfels

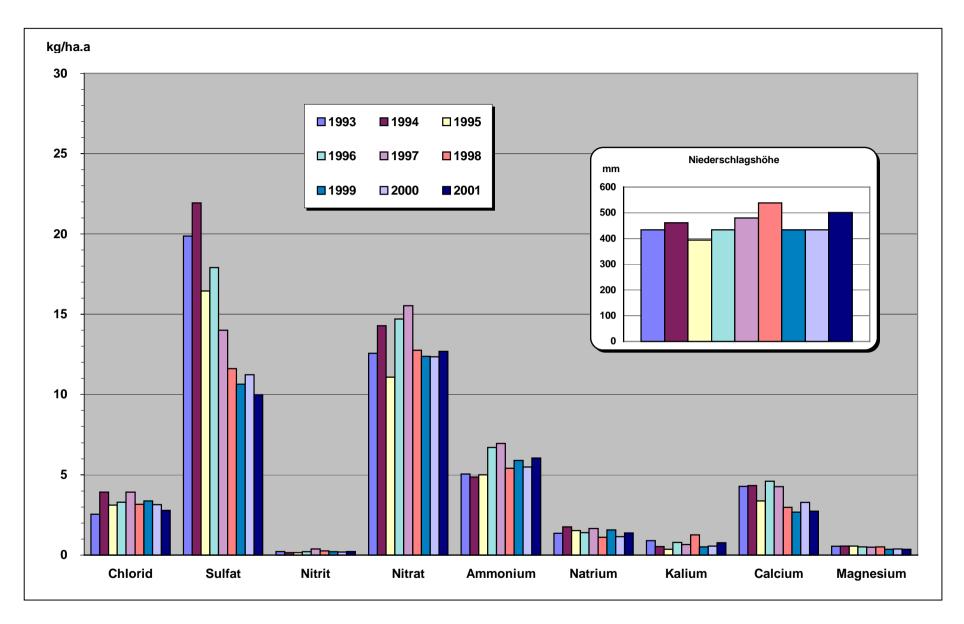


Abbildung 2.2: Stoffeintrag durch Nassdeposition an der Station Weißenfels

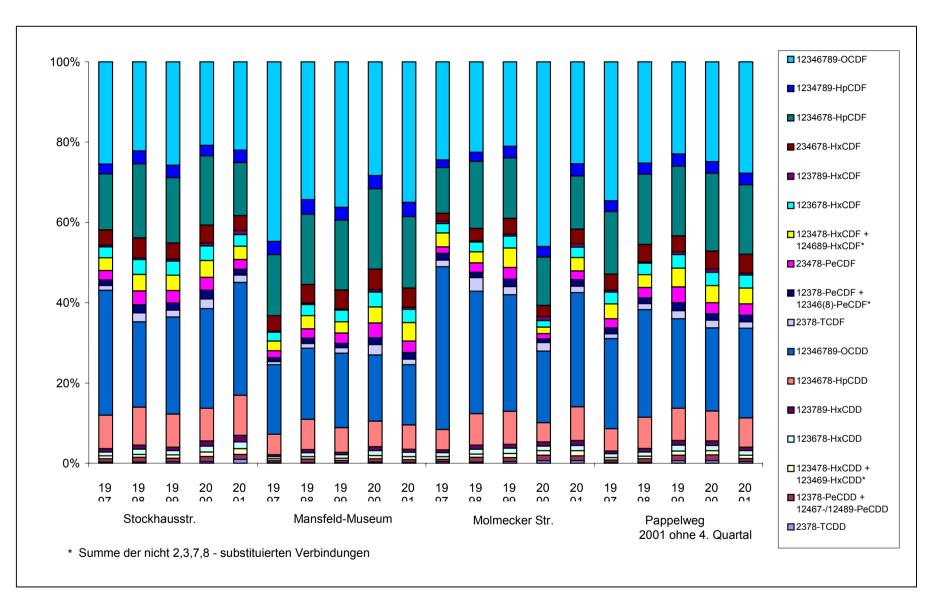


Abbildung 2.3: Kongenerenverteilung der PCDD/F - Depositionen in den Jahressummen 1997 bis 2001 in Hettstedt

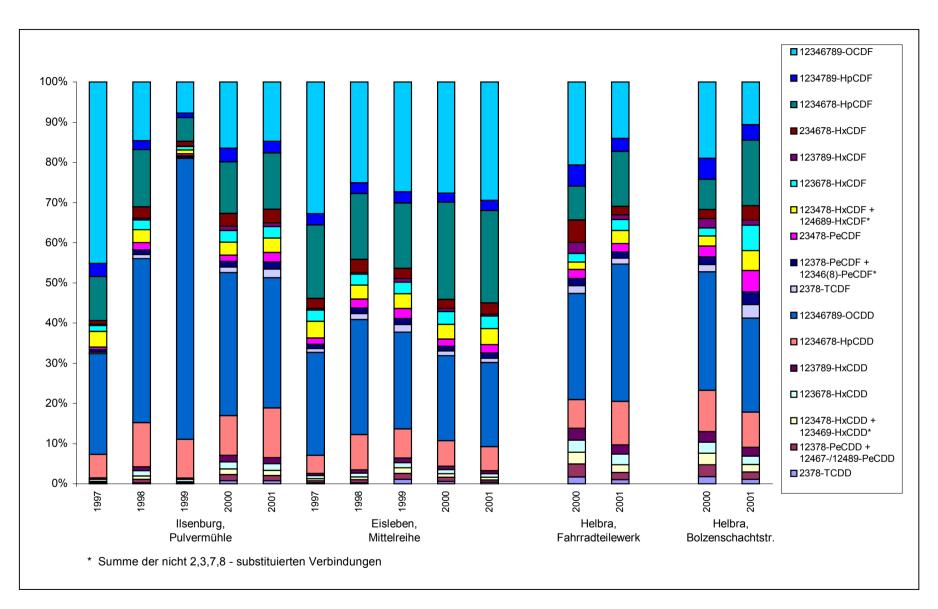


Abbildung 2.4: Kongenerenverteilung der PCDD/F – Depositionen in den Jahressummen 1997 bis 2001

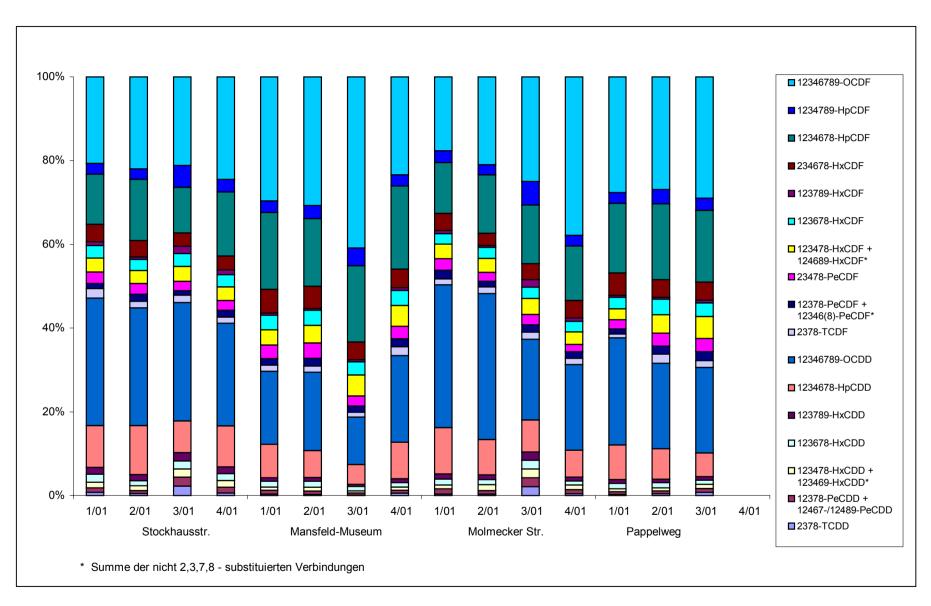


Abbildung 2.5: Kongenerenverteilung der PCDD/F - Depositionen in den Quartalsproben 2001 in Hettstedt

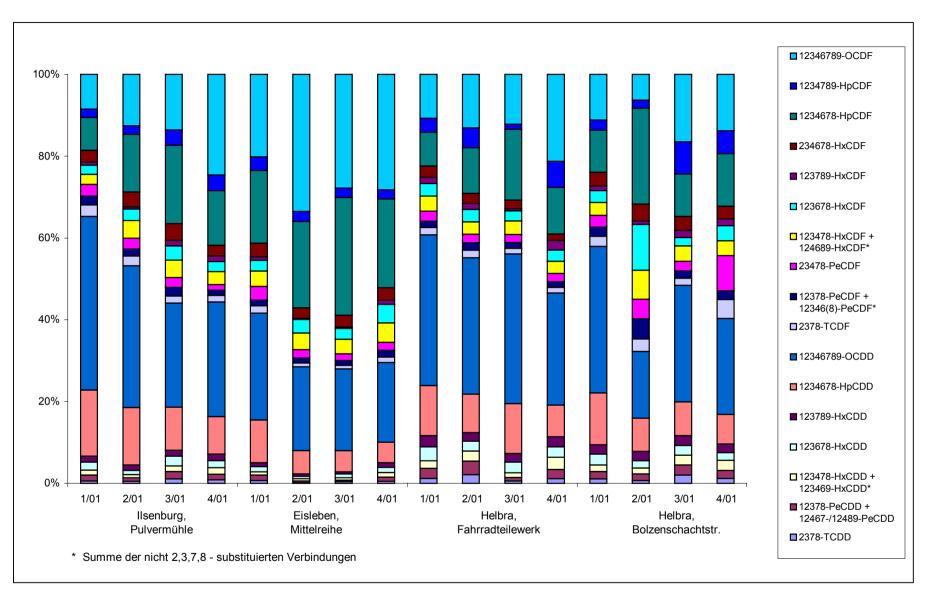


Abbildung 2.6: Kongenerenverteilung der PCDD/F - Depositionen in den Quartalsproben 2001

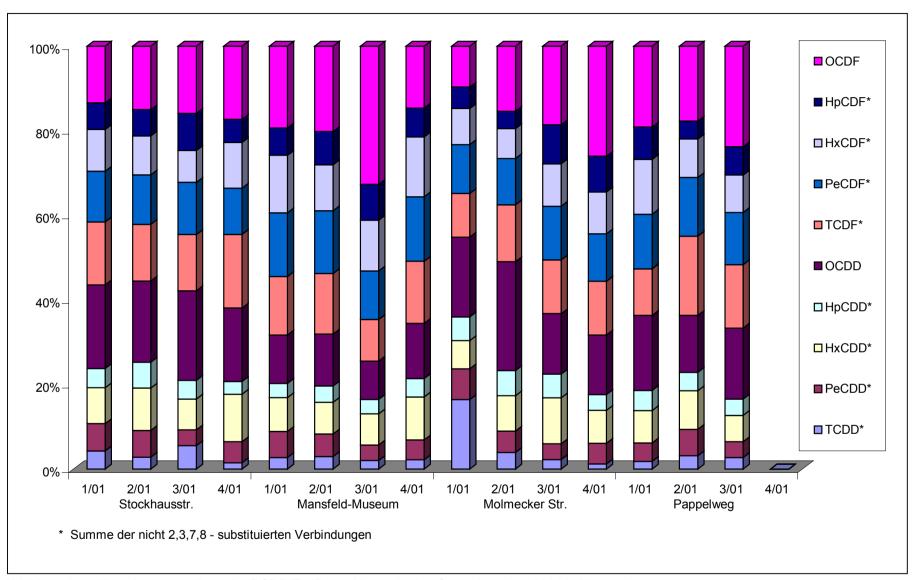


Abbildung 2.7: Homologenverteilung der PCDD/F – Depositionen in den Quartalsproben 2001 in Hettstedt

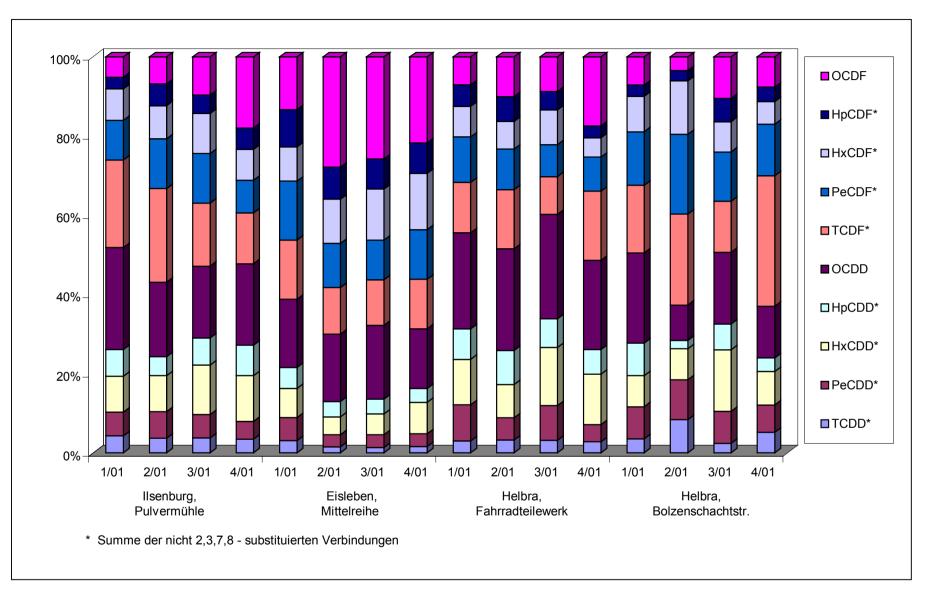


Abbildung 2.8: Homologenverteilung der PCDD/F – Depositionen in den Quartalsproben 2001

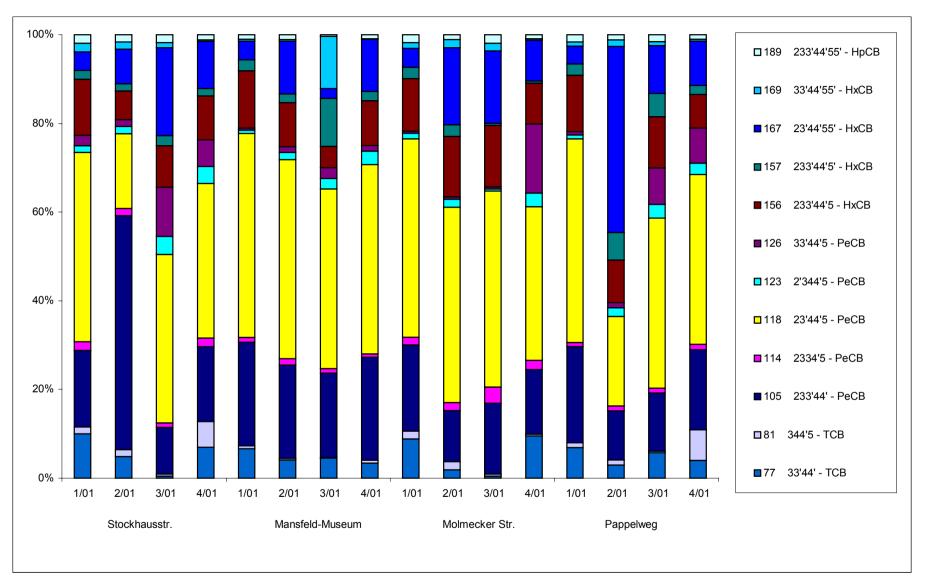


Abbildung 2.9: Kongenerenverteilung der dioxinähnlichen PCB in den Quartalsproben 2001 in Hettstedt

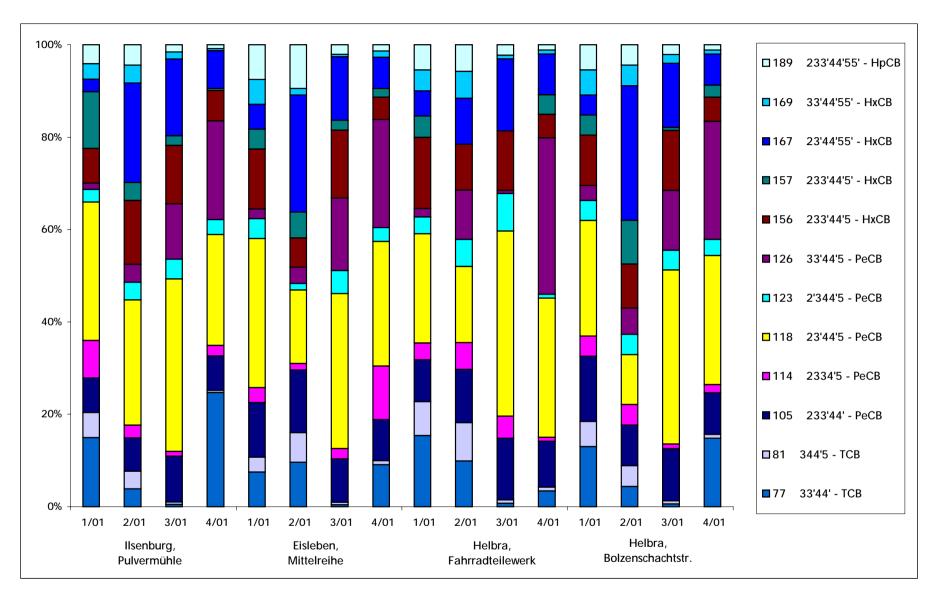


Abbildung 2.10: Kongenerenverteilung der dioxinähnlichen PCB in den Quartalsproben 2001

IMPRESSUM

ISSN 0941 - 7281

Landesamt für Umweltschutz Sachsen-Anhalt - Halle (2002) - Heft 38: Immissionsschutzbericht 2001

Herausgeber

und Bezug: Landesamt für Umweltschutz Sachsen-Anhalt,

PSF 200841, 06009 Halle (Saale)

Sitz: Reideburger Str. 47, 06116 Halle (Saale)

Telefon (0345) 5704 - 0

Sachgebiet Öffentlichkeitsarbeit

Schriftleitung: Abt. Immissionsschutz/Chemikaliensicherheit

Email: abteilung5@lau.mu.lsa-net.de

Diese Schriftenreihe wird kostenlos abgegeben und darf nicht verkauft werden. Der Nachdruck bedarf der Genehmigung.

Die Autoren sind für den fachlichen Inhalt ihrer Beiträge selbst verantwortlich. Die von ihnen vertretenen Ansichten und Meinungen müssen nicht mit denen des Herausgebers übereinstimmen.

Dezember 2002

Diese Schrift darf weder von Parteien noch von Wahlhelfern während eines Wahlkampfs zum Zwecke der Wahlwerbung verwendet werden. Missbräuchlich ist insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der Parteien sowie das Einlegen, Aufdrucken oder Aufkleben politischer Informationen oder Werbemittel.

Auch ohne zeitlichen Bezug zu einer bevorstehenden Wahl darf die Schrift nicht in einer Weise verwendet werden, die als Parteinahme der Landesregierung zugunsten einzelner Gruppen verstanden werden könnte.